Engineering Thermodynamics and Fluid Mechanics

These lecture notes have been prepared as a first course in Engineering Thermodynamics and
Fluid Mechanics up to the presentation of the millennium problem listed by the Clay
Mathematical Institute. Only a good knowledge of classical Newtonian mechanics is assumed.
We start the course with an elementary derivation of the equations of ideal Engineering
Thermodynamics and Fluid Mechanicsand end up with a discussion of the millennium problem
related to real fluids. With this document, our primary goal is to debunk this beautiful problem as
much as possible, without assuming any previous knowledge neither in Engineering
Thermodynamics and Fluid Mechanicsof real fluids nor in the mathematical formalism of
Sobolev’s inequalities. All these items are introduced progressively through the document with a
linear increase in the difficulty. Some rigorous proofs of important partial results concerning the
millennium problem are presented. At the end, a very modern aspect of Engineering
Thermodynamics and Fluid Mechanicsis covered concerning the subtle issue of its application to
high energetic hadronic collisions.
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81. Introduction

Engineering Thermodynamics and Fluid Mechanicsconcerns the study of the motion of fluids (in
general liquids and glgses) and the forces acting on them. Like any mathematical model of the real
world, Engineering Thermodynamics and Fluid Mechanicsmakes some basic assumptions about
the materials being studied. These assumptions are turned into equations that must be satisfied if
the assumptions are to be held true. Modern fluid mechanics, in a well-posed mathematical form,
was first formulated in 1755 by Euler for ideal fluids.

Interestingly, it can be shown that the laws of Engineering Thermodynamics and Fluid
Mechanicscover more materials than standard liquid and gases. Indeed, the idea of exploiting the
laws of ideal Engineering Thermodynamics and Fluid Mechanicsto describe the expansion of the
strongly interacting nuclear matter that is formed in high energetic hadronic collisions was
proposed in 1953 by Landau. This theory has been developed extensively in the last 60 years and
is still an active field of research. This gives a very simple 3-steps picture of a non-trivial
phenomenon observed in hot nuclear matter after the collision of high energetic heavy ions,
composed of a large collection of charged particles.

(i)
After the collision a nuclear medium, a zone of high
density of charges, is formed with high pressure in
the middle (center of the collision).

(i)

According to the laws of fluid mechanics, as we
shall prove them, this implies that an acceleration
field is generated from high pressures to low
pressures.




(iii)

This implies that particles will flow in a certain
transverse direction, as indicated on the figure. This
iIs known as the transverse flow property, well
established experimentally.

We come back on these ideas and their developments in the last section of this document. It
requires a relativistic formulation of fluid mechanics. Up to this section, we always assume that
the dynamics is non-relativistic.

§2. Continuum hypothesis

Engineering Thermodynamics and Fluid Mechanicsis supposed to describe motion of fluids and
related phenomena at macroscopic scales, which assumes that a fluid can be regarded as a
continuous medium. This means that any small volume element in the fluid is always supposed
so large that it still contains a very great number of molecules. Accordingly, when we consider
infinitely small elements of volume, we mean very small compared with the volume of the body
under consideration, but large compared with the distances between the molecules. The
expressions fluid particle and point in a fluid are to be understood in this sense. That is,
properties such as density, pressure, temperature, and velocity are taken to be well-defined at
infinitely small points.

These properties are then assumed to vary continuously and smoothly from one point to another.
Consequently, the fact that the fluid is made up of discrete molecules is ignored. If, for example,
we deal with the displacement of some fluid particle, we do mean not the displacement of an
individual molecule, but that of a volume element containing many molecules, though still
regarded as a point in space. That’s why Engineering Thermodynamics and Fluid Mechanicsis a
branch of continuum mechanics, which models matter from a macroscopic viewpoint without
using the information that it is made out of molecules (microscopic viewpoint).



83. Mathematical functions that define the fluid state

Following the continuous assumption, the mathematical description of the state of a moving fluid
can be characterized by functions of the coordinates X, y, z and of the time t. These functions of
(X, Y, z, t) are related to the quantities defined for the fluid at a given point (X, v,

z) in space and at a given time t, which refers to fixed points in space and not to fixed particles of
the fluid. For example, we can consider the mean local velocity v(x, vy, z, t) of fluid particles or
fluid points, called the fluid velocity, and two thermodynamic quantities that characterize the
fluid state, the pressure p(x, vy, z, t) and the mass density (X, vy, z, t), the mass per unit volume of
fluid. Following the discussion of §2, two remarks can be done at this stage:

The fluid is assumed to be a continuum. This implies that all space-time derivatives of all
dependent variables exist in some reasonable sense. In other words, local properties such
as density pressure and velocity are defined as averages over elements large compared
with the microscopic structure of the fluid but small enough in comparison with the scale
of the macroscopic. This allows the use of differential calculus to describe such a system.

All the thermodynamic quantities are determined by the values of any two of them,
together with the equation of state. Therefore, if we are given five quantities, namely the
three components of the velocity v, the pressure p and the mass density , the state of the
moving fluid is completely determined. We recall that only if the fluid is close to
thermodynamic equilibrium, its thermodynamic properties, such as pressure, density,
temperature are well-defined. This requires (as a very former hypothesis) that local
relaxation times towards thermal equilibrium are much shorter than any macroscopic
dynamical time scale. In particular, microscopic collision time scale (between elementary
constituents of the fluid) needs to be much shorter than any macroscopic evolution time
scales. This hypothesis is almost a tautology for standard fluids build up by molecules at
reasonable density, but becomes not trivial in the case of some hot dense matter state
created in high energetic hadronic collisions.



In the following, we prove that these five unknown quantities describe completely the case of
what we define as ideal fluids, in which we take no account of processes of energ?/ dissipation.
Energy dissipation ma?/ occur in a moving fluid as a consequence of internal friction (or
viscosity) within the fluid and heat exchange between different parts of it. Neglecting this
phenomenon, we can find a set of five equations that are sufficient obtain a closed system: 5
ecf1uat|o_ns for 5 unknown quantities. Interestingly, we can gain some intuition about the behavior
of the ideal flow by expressing in more details 1ts pressure field. An ideal fluid, in particular, is
characterized by the assumption that each particle pushes its neighbors equally in every direction.
This is why a single scalar quantity, the pressure, is sufficient to describe the force per unit area
that a particle exerts on all its nelghbors at a given time. Also, we know that a fluid particle is not
accelerated if its neighbors push back with equal force, which means that the acceleration of the
fluid Fartlcle results from the pressure differences. In short, the pressure force can be seen as a
global interaction of all fluid particles.

When the energy dissipation inside the fluid is not neglected, we need to consider also the
internal energy density e(x, vy, z, t) and heat flux density q(x, vy, z, t) as four additional unknown
functions to be determined by a proper set of closed equations: nine equations are needed in such
cases. This concerns what we define as real fluids. We discuss the case of real fluids in more
details later in the document. However, a few intuitive arguments can be made with no
mathematical formalism. When the energy dissipation is not neglected, this means that we take
into account frictional forces inside the fluid. Their main effect is that they enhance the local
coherence of the flow. They counteract at each point the deviation of the velocity field from its
local average. This means that if a fluid particle moves faster than the average of its neighbors,
then friction slows it down.

When fluid quantities are defined at given fixed points (X, y, z) in space and at a given time t, we
speak of the Eulerian description of the fluid. When fluid quantities are defined as associated to a
(moving) particle of fluid, followed along its trajectory, we speak of the



Lagrangian point of view. An important notion can be derived from this last view point: the flow
map.

@(.,t)

A fluid particle moving through the fluid volume is labeled by the (vector) variable X (defined at
t=0). At some initial time, we define a subset of fluid particles (of the entire fluid volume) Q.
The fluid particles of this subset will move through the fluid within time. We introduce a function
# , t) that describes the change of the particle position from the initial time up to t > 0. The
unction (. ,_R]_IS itself a vector, with 3 coordinates corresponding to the 3 coordinates of space
Dy, Oy, ;). This means that we can denote the position of any particle of fluid at time t by ( ,
t) which starts at the position X at t=0. Then, we can label the new subset of fluid particles at time

t, originally localized in Qy, as:
Qi={ (,1): belongs to Qq}.

Stated otherwise, the function t — ( , t), represents the trajectory of particles: this is what we

also call the flow map. In particular, the_particle velocity is given by:
X v,z,t)= ¢(,t)with (,t=0)= .
We can think of € as the volume moving with the fluid.



84. Limits of the continuum hypothesis

According to the continuous assumption (82), the physical quantities (like velocity, pressure and
density) are supposed to vary smoothly on macroscopic scales. However, this may not be the case
everywhere in the flow. For example, if a shock front of the density appears at some values of the
coordinates at a given time, the flow would vary very rapidly at that point, over a length of order
the collision mean free path of the molecules. In this case, the continuum approximation would
be only piecewise valid and we would need to perform a matching at the shock front. Also, if we
are interesting by scale invariant properties of fluid in some particular cases, we need to keep in
mind that there is a scale at which the equations of Engineering Thermodynamics and Fluid
Mechanicsbreak up, which is the molecular scale characterized by the mean free path of
molecules between collisions. For example, for flows where spatial scales are not larger than the
mean distance between the fluid molecules, as for example the case of highly rarefied gazes, the

continuum assumption does not apply.
85. Closed set of equations for ideal fluids

The derivation of equations underlying the dynamics of ideal fluids is based on three
conservation principles:

i.  Conservation of matter. Matter is neither created nor destroyed provided there is no
source or sink of matter;

ii.  Newton’s second law or balance of momentum. For a fluid particle, the rate of change of
~momentum equals the force applied to it;
iii.  Conservation of energy.

In turn, these principles generate the five equations we need to describe the motion of an ideal

fluid: (1) Continuity equatlon, which governs how the density of the fluid evolves locally and thus

indicates compressibility properties of the fluid; (ii) Euler’s equations of motion for a fluid

element which indicates how this fluid element moves from regions of high pressure to those of

!c?vy OPressure; (i) Equation of state which indicates the mechanism of energy exchange inside the
uid.



We derive first the expression for the conservation of mass (i). Consider a fluid of mass density ,
fluid particle velocity v and some volume , fixed in space (i.e. fixed in some Newtonian reference
frame). The mass of the fluid in this volume is| pdV, where the integration is taken on the volume
. If the fluid moves, then there is a flow of mass across each element of surface d on the
boundary of the volume , where the magnitude of the vector d is equal to the area of the surface
element and its direction is along the normal to the surface. Provided that there are no sources or
sinks of fluid, the elementary mass of fluid flowing in unit time through an element d of the
surface bounding is p . d . By convention d is taken along the outward normal, which means
that p . d 1is positive when the fluid is flowing out of the volume and negative for a flow into the
volume .

The total mass of fluid flowing out of the volume in unit time is thus: $ p . d , where the

integration is taken over the whole of the closed surface bounding . Therefore, we can write:
tfpdVZ—fﬁp .d,

where — (| pdV is the net decrease of the mass of fluid in per unit time. Using the Green’s

formula to express § p . d as a volume integral over : | div(p )dV. We obtain:

—-p
I[ ¢+ div(p )]dV =0.
Since this equation must hold for any volume, the integrand must vanish. This gives:

-+
t+div(p )=0.
1)

This is the continuity equation, the first fundamental equation of fluid mechanics. The vector = p
is called the mass flux density. Its direction is along the motion of the fluid and its magnitude
equals the mass of the fluid flowing per unit time though a unit area perpendicular to the velocity
of the fluid.



By expanding div(p )as ( . )(p) + pdiv( ), we can also write this equation as:

p

T (. p)=[ F+C. )1 (p) = —pdiv( ).

1)

We identify the operator F e+ (. )] that we define below as the material derivative, or the
derivative following the flow

Before developing some consequences of the continuity equation, we establish the Newton’s
second law (ii) for some volume of the fluid, assumed to be ideal, characterized by its mass
density, pressure and fluid particle velocity. In the absence of external force, by definition of the
pressure, the total force acting on the ideal fluid in volume is equal to: — ¢ pd .

This last formula represents the integral of the pressure taken over the surface bounding the
volume, with similar conventions as previously defined for the surface element d . This surface
integral can be transformed to a volume integral over : — ¢ pd =—| (p)dV.

Thus, the fluid surrounding any elementary volume dV exerts a force —dV (p) on that
clement. Moreover, from Newton’s second law applied to this elementary volume dV, the mass
times the acceleration equals: pdV = 4.

Then, the Newton’s second law of motion for the fluid per unit volume reads:

pa=—_ (p)
)
Here, we need to be careful with the mathematical expression d /dt. It does not represent (onIY)
y

the rate of change of the fluid velocity at a fixed point in space, which would be mathematical
written as  / Ot.

[



Rather, d /dt is the rate of change of the velocity of a fluid particle as it moves in space (see §2),
called the material derivative, namely:

d [ x+dx,y+dy z+dz t+dt)— (x,y,21)]

dt = dt
This can be developed as:
d dx 0 dyo dzo 0 0
dt =dt x +dt y +dt z +t-C O+ B

There are two terms in the expression of d =% 4 . dt: the difference between the velocities of the
fluid particle at the same instant in time at two points distant of (dx, dy, dz), which is the distance
moved by the fluid particle during dt, and the change during dt in the velocity at a fixed point in
spacet(x, y, z). Combining the vector equation (2) and the expression of the material derivative,
we get:

0 1
a G 0=75 o)
©)

This vector equation g3) represents a set of three equations (in three dimensions of space) that
describe the motion of an ideal fluid, first obtained by Euler 1n 1755. That’s why it is called the
Euler’s equations, the second fundamental set of equations of Engineering Thermodynamics and
Fluid Mechanlcs(u). It is trivial to expand the vector equation (3) on the 3 Cartesian coordinates
of space (X, Yy, z) as a set of 3 equations (in a compact form):

Vx 8p/6x
0 0 0 0 1
( +v  +v  +v )[wl=—  [dp/dy].
ot X ox yay ‘0z Vv p

z op/ oz

If external forces have to be considered these equations become:
0 1 1

- +(. ()= (p)+~.
ot p p ext

11



Here, can be for example the gravity force p .

Before continuing the derivation of fundamental equations of fluid mechanics, we give some

hints on how Euler’s and continuity equations can be derived using the notion of flow map (§4R.

As we have seen, the flow map is a function ( , t) that describes the chan?e of the fluid particle

position X at initial time (t=0) up to t > 0. Then, we have established the following relations (§4):
Xy, z,t)=75(,t)with (,0)=".

This means that the acceleration of a fluid particle can be written as:

d d 0 Ovyx Oy
— (=73 ((,.9.9= —T+{T 7 +-}
dt t t X t
We rewrite the last term as:
Ovx Odx Obx O Ody O 0d, 0
e U A A2 LI CR (O}
X t t X X ty vy tz z
We obtain:
d d 0

a (Y=g (C.O.Y =5 +C. ()

We find again the derivative of the velocity following the flow that leads to Euler’s vector
equations. Similarly, we can use the notion of flow map to write the conservation of mass and
then the continuity equation. We consider fluid particles X initially localized in a subset Qg of the
entire fluid volume. At time t > O, they are contained in the subset (volume moving with the

fluid):
Qi={ (,t): belongs to Qo}.

Note that Q; is not fixed in space (i.e. not fixed in some Newtonian reference frame), but moving
with the flow according to the flow map function.

-



The conservation of mass can then be written as:
SJ (. 0dV=1p( ,0)dV.
t 0

Since the right-hand side is independent of the time, we can write:

d d

— _
gt (L 0dV = 4 X p( (L1, 0dV=0.

In this expression, the time derivative represents the material derivative, following the movement
of fluid particles. The situation is not that easy a priori as the domain of integration depends on
the time in the above formula. It can be shown that the following relation holds:

d p

;fgt p( (.0.9dV=la[ | +div(p )ldV.

Then, this leads to the continuity equation. ' S .
We come back to the Euler;s equations (3). An important vector identity is the following:
= X +( . _

2
Then, equations (3) can bg rewritten as: _
baeo%"\%rz ()— x ()=—" (9]

This expression of equations (3) has many interests that we shall see later. For example, in the
case of constant mass density, taking the curl of this equation makes the gradients vanishing and
we obtain a differential equation involving only the velocity field. Another interesting physical
case appears when ()=0.

13



Then the velocity field can be written as the gradient of a scalar function and the above
expression leads to an interesting simple equation.

In this section we have ignored all Tprocesses related to energy dissipation, which may occur in a
moving fluid as a consequence of internal friction (or viscosity) in the fluid as well as heat
exchange between different parts of the fluid. Thus we have treated only the case of ideal fluids,
for which thermal conductivity and viscosity can be neglected. With the continuity equation, the
%uzl)er’s equations make a set of 4 equations, for five quantities that characterize the ideal fluid

This means that we are missing one equation, which is coming with the last conservation
principle, namelfy the conservation of energy (iii). The absence of heat exchange between the
different parts of the fluid implies that the motion Is adiabatic: thus the motion of an ideal fluid is
by definition considered as adiabatic. In other words, the entropy of any fluid particle remains
constant as that particle moves in space inside the fluid. We label the entropy per unit mass as s.
We can easily write the condition for an adladba}g{: mé)tlon as:

s/dt = 0.

This represents the rate of change of the entropy (per unit mass) of a fluid particle as it moves in
the fluid. This can be reformulated as:

S
e+ (. )(E)=0.
(4)

This expression is the general condition for adiabatic motion of an ideal fluid. This condition
usually takes a much simpler form. Indeed, as it usually happens, the entropy is constant
throughout some volume element of the fluid at some initial time, then it retains the same
constant value everywhere in the fluid volume, at all times for any subsequent motion of the
fluid. In this case, equation (4) becomes simply: s=constant.

14



Such a motion is said to be isentropic, which is what we assume in general for an ideal fluid,
unless stated otherwise. This condition, together with an equation of state for the fluid provides a
relation between the pressure and the mass density, and then the fifth equation: p=p( ,s).

This allows us to know what happens to the density when pressure changes and consequerltlg to
close the system of equations describing the mechanics of ideal fluids: 5 equations for 5 variables
(2 thermodynamic variables and the 3 coordinates of the velocity).

We rewrite the Euler’s equations #3)_ in case of steady flow, for which the velocity is constant in
time at any point occupied by the fluid:

azo.

This means that the velocity field is a function only of the coordinates. Taking p = constant for
simplicity, we obtain: -
2 ()= X 5 ()=— (®p)

3)

Then, we define streamlines: the tangent to a streamline at any point gives the direction of the
velocity at that point. Streamlines are thus defined by the set of equations:

dx-dy-dz_
Vy Vy Vg

One interest of steady flow is that the streamlines do not vary with time and thus coincide with
the paths of the fluid particles. Obviously, this coincidence between streamlines and trajectory of
fluid particles does not hold in non-steady flow: indeed, the tangents to the streamlines give the
directions of the velocities of fluid particles as a function of the coordinates in space at a given
instant, whereas the tangents to the path (trajectory) of a given fluid particle provide the direction
of the velocities as a function of time.

15



It follows that the quantity /2 + P/p is constant along a streamline, which coincides with the
particle trajector}/ for steady flow. In general this constant is different with different streamlines:
this is what is called the Bernoulli’s equation.

Ideal fluids present an interesting property: mass and momentum conservation principles are
uncoupled from energy conservation. Indeed, if we consider the entropy to be constant
throughout the fluid, it 1s not required to consider explicitly the energy conservation to describe
the motion of the fluid. We can show that the relation corresponding to energy conservation is a
cons_eéluence of the continuity and Euler’s equations under the condition of isentropic flow. We
consider some volume element of the fluid, fixed in sgace, and we find how the energy of the
fluid contained in this element varies with time. In the absence of external force, the energy
density, per unit volume of the fluid, can lee witter) as:
=%2p “Hpe

The first term is the kinetic energy density and the second the internal energy density, noting the
internal energy per unit mass.

The change in time of the energy contained in the volume element is then given by the partial
derivative with respect to time NatUdV, where the integration is taken over . Then, following a
similar reasoning as for the continuity equation, we can write a general expression of energy
conservation for the fluid in that volume element, namely:

QU= —§ .d =-]div( )dV,
ot

whSre [)epresents the energy flux density. We let as an exercise (below) to show that is not equal
toU , but: - _ -
=p (2+e+ )=p (27+h).

-



With the notation h = + P/p, which corresponds to the enthalpy of the fluid per unit mass. The
proof uses only the continuity and Euler’s equations. Since the equation of energy conservation
must hold for any volume element, the integrand must vanish in:
] ) ?[ o+ div( )]dVv =0.

We end up with the local expression é)g ggirgy colnservatzlon. )

£ ivip ( — +h))=0.

- - at. - 2 -y - - -

The zero on the right hand side of this relation comes from the condition for adiabatic motion:
ds/dt = 0, which is a necessary condition for an ideal fluid (see above).

Stated differently, if ds/dt would be non-vanishing, this right hand side term would be necessarily
proportional to: ds/dt. In fact, in the presence of heat flow within the fluid, which means that the
fluid is not supposed to be ideal, the rate of heat density change reads: pT ®g, which leads to the
general equation for non-vanishing ds/dt:

ap! d
( 2+) 1 S
—+div(p (7% +h)=pT —

ot 2 dt

Exercise: For an ideal fluid. Prove that the energy flux density can be written as:

p (tlg 2+ f)\) with h =+ P/p. Then, derive the local expression of the conservation of energy (per
unit mass):

0p(ln 2+¢)
Z

Tav (1 ——— 27 m)=0.
ot 2 s
. o o opg"He) . .
Solution: The idea is to compute the partial derivative using equations of fluid
ot
mechanics that we have established together with a thermodynamic relation involving the internal

energy (per unit mass).

17




We write:

1
=2 A 4
op(Z2—7 o 1 Z0p
= p - +_ _l
5 ot ot 2 ot .
In this identity, “"5 can be replaced by —div(p ) using the continuity equation and © 4 is given
by the Euler’s equations. We obtain
1
2
ap(Z) 12
=p . [C. ) 1= () - div(p ).
ot 2
1
With the vector identity: . [( . ) 1= : ( )and
2
(p)=p (h)—pT (s) (since dh=Tds+1/ dp), we obtain:
1
2
az" ) 1 12
== .[ ( +h)] +pT . (s) — div(p ).
ot 2 2
Also, using the thermodynamic relation: d =Tds+(p/ ?)d , we can write: d(p )=hd + Tds
Using the adiabatic condition of motion, this leads to:
a(pe)
ot =-—h.div(p )—pT . (s).
Combining the results, we find the expected result:
1
-2
dp(2 *9) 1
==div(p (7 +h)).
ot 2
In integral form, it reads:
0 1 1
T Ip(TP +0dv=—§p ( 77 +h)d
ot 2

2
2

The left hand side is the rate of change of energy of the fluid in some given volume. The right
d side is therefore the amount of ener
2

_ } y flowing out of this volume per unit time. Hence, p
+ h) is the energy flux density vector. Its magnitude is the amount of energy passing

18




per unit time through a unit area perpendicular to the direction of velocit}/. This means that any
. . . . . . . . 2 _

unit mass of fluid carries with it during its motion the amount of energy > “+ h

(and not %, % +¢).

The fact that enthalpy appears and not internal energyﬁimply comes from the relation:

The first term is the total energy transported through the surface in unit time by the fluid and the

second term is the work done by pressure forces on the fluid within the surface.

19




Summary of the three conservation principles for ideal fluids is provided in the table below:

(1) Conservation of matter

Continuity equation:

p
THCE =+ G 0P
=—pdiv( ).
(i1) Balance of Momentum (Newton’s Euler’s (vector) equation:
second law) 0 1 1
ot+(.  XN) =—p @+ p &
Useful identity:
1
()=x (0)+(C. ))
2

(iii) Conservation of energy or absence of
heat exchange between the different parts
of the fluid which implies that the motion is

adiabatic

Local form of the conservation of energy
reads:
1 2

o2+ ) 12
+div(p ( +h))=0.

ot 2

For ideal fluids, this is equivalent to the

condition:
ds S
dt = t +(. )(s) = 0 or s = constant.

Together with an equation of state this

provides a relation of the form: p=p(,s).
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Exercise: Momentum flux. We label the spatial component X, y, z of vectors by one index i.
Prove that there exists a quantity ITi that depends on two indices that verifies the relation:
at ?pVidV == Dk=xy.z ¢ ITjdZ for each i=x, y, z.

Solution: It can easily be shown that: ITjx = pdik + pviVk, where dix = 1 if i = k and 0 otherwise.
The integral relation above can be interpreted as usual. The left hand side is the rate of change of
the component i of the momentum contained in the volume considered. The right hand side is
therefore the amount of momentum flowing out through the bonding surface per unit time.

Thus, ITjx corresponds to the component 1 of the momentum flowing in unit time through unit
area perpendicular to the axis labeled by k. The energy flux is given by a vector (depending on
one index), the energy itself being a scalar. Here the momentum flux is given by a quantity
depending on two indices, a tensor of rank 2; the momentum itself being a vector.

We consider now the kinetic energy coptained in a volume € defined by the flow map (€2 is
moving with the fluid), namely Ex = [o; 72 p 2dV. Note that Q; is not fixed in space (i.e. not fixed
in some Newtonian reference frame), but moving with the flow according to the flow map
function. We are interested by the variation along the flow of the kinetic energy contained in this
volume Ek. To get this information, we need to compute the (material) derivative dEx/dt,
knowing that Ek 1s defined as an integral over the moving volume ;. As discussed previously,
this is not obvious to commute the derivative and the integral as the integral domain depends on
time. In fact, it can be shown that:




As a first case, we assume that all the energy is kinetic. This means that we consider the

internal energy as a constant which does not matter in the expression related to energy

balance. The principle of conservation of energy states that the rate of change in time of

the kinetic energy in a portion of fluid (following the flow) equals the rate at which the
ressure forces work. For simplicity, we neglect other external forces that may apply.
athematically, this gives:

dEx d 1 d
— =[] Tpxvli=] pTdVv=-¢p .d.
dt d Q2 Q  dt St
The last integral is taken on a closed surface bounding the volume Q. Also, the quantity —
fsip . d equals — o div(p )V =—Jq . (p)dV — [ pdiv( )dV. We can replace —
(p) by p. ¢ in this identity using the Euler’s equations, which leads to:
dEx d d
— =]  p.Tdv=[] p. Tdv-]| pdiv( )dV.
dt dt dt Q
Qt Qt t

This equality can only be realized if div( ) =0, or (using the continuity equation) d /dt=0.
This corresponds to the condition of incompressible fluid (see §8).

As a second case, we consider that the internal energy is not constant. Following the
previous discussion, we can write in this more general case:

d(EK + pE)
dt
5t
After developing the above expression as in the first case, we can easily show that this
leads to the relation p “4= P, ©gror equivalently p? 4,°= p. This corresponds to a re-

writing of the variation of enthalpy as: dh = dp/p, which is also the condition for an
iIsentropic motion.
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86. Boundary conditions for ideal fluids

The equations of motion have to be supplemented by the boundary conditions that must be
satisfied at the surfaces bounding the fluid. For an ideal fluid, the boundary condition is simply
that the fluid cannot penetrate a solid surface. This means that the component of the fluid velocity
normal to the bounding surface must vanish if that surface is at rest: . =0.

In the general case of a moving surface, . must be equal to the corresponding component of the
velocity of the surface. At a boundary between two immiscible fluids, the condition is that the
pressure and the velocity component normal to the surface of separation must be the same for the
two fluids, and each of these velocity components must be equal to the corresponding component
of the velocity of the surface.

Given boundary conditions, the continuity and Euler’s equations, together with the relation for
adiabatic motion, established in 85 form a closed set of equations necessary to determine the 5
unknown quantities, once initial conditions are assumed. Solving this problem means that, if we
consider a moving fluid contained in a volume at any instant t ('t the corresponding moving
volume), at each point x of t, we can finrd a well-defined solution for the 5 quantities to be
determined. Such that also the equations of Engineering Thermodynamics and Fluid
Mechanicsmust contain non-diverging terms at all points, of t. In particular, the total kinetic
energy density integrated over the moving volume t, ZoF “dV, must remain finite, not diverging
to infinity at any time. Stated dlfferentlg/, once we define initial conditions, a Engineering
Thermodynamics and Fluid Mechanicsproblem is solved (globally) if we can show the existence
and unicity of smooth solutions of equations (85) for the velocity, pressure and mass density, for
all points In the fluid volume and at all times, with dedicated boundary conditions. This is highly
non trivial as we shall see next.

87. Introduction to nonlinear differential equations

A central issue in the study of nonlinear differential equations, as the Euler’s e(?uationsz is that
solutions may exist locally in time (that is, for short periods of time) but not globally in time.
This is caused by a phenomenon called blow-up, illustrated in this section.
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We first discuss this phenomenon with three simple ordinary differential equations for a real

function u(t):

@ “=u, (0) =1’ (O “ =u+

dt dt t
: o . u(t) = Ae. _ _ o
This solution is defined globally in time and grows exponentially as time becomes infinite.
Generally, global existence and exponential growth are typical features of linear differential
equations. Equation (b) is nonlinear. Its solution is:
u(t)=1/(t —t),

where T is a parameter. The solution of (b) is then diverging when t is apé)roaching 1. This
example (b) shows that nonlinearities which grow super-linearly in u(t) can lead to blow-up and a
loss of global existence. Equation () is al(sg) nolr)zllnear ap)d its solution Is:

u(t) = — Ae).
If A <0, which corresponds to 0 <u(0) < 1, then the solution exists globally in time.

If 0 < A < 1, which corresponds u(0) > 1, then the solution blows up at t = log(}). A ~

Thus, there is a global existence of solutions with small initial data and local existence (in time)
of solutions with large initial data. This type of behavior also occurs in many partial differential
equations of more general functions of space and time: for small initial data, linear damping
terms can dominate the nonlinear terms, and one obtains global solutions whereas for large initial

data, the nonlinear blow-up dominates and only local solutions may exist. _
Consider now a less S|mi)le_ example of nonlinear partial dgf;i{fntlal equation. A real function
of x and t, u(x, t), is a solution of the equation: M+ U= =0, with the initial condition:

u(x, 0) = uop(x). ot ox
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We can show that this equation cannot have a global smooth solution if “*,,°® < 0 at any point.
The proof is simple, based on the previous discussion. Suppose that ugx, t) is a smooth
solution. We take the x derivative of the partial differential equation: ** + °**? =
ot  0x
'Bu_atx + UUXX + u2X - O. JE—

The subscript x represents a derivative with respect to x: uy = *s. We can rewrite this expression
as:

We obtain:

Ul =0

It is interesting to note as: ¢ = [o° + U &C] the derivative operator appearing in the last formula
galready seen In 85), which is the derivative along the characteristic curves associated with the
unction u. Then, we obtain an equation clogue_to equation (b) above:

dt

X
=—u X

Therefore, if ux < 0 at initial time, the solution of this equation follows exactly what we have
computed for equation (b) and it blows up at some positive time. A global smooth solution
cannot exist.

The interest of this (partial) differential equation: ®* + %2 =€ 4 y %¥ = 0 ljes in the fact

ot ox ot Ox

that it is equivalent to a one dimensional Euler’s equation, u being the velocity field, with p=0
and in the absence of external forces. Already with this simple form, we remark that a (unique)
global smooth solution may not exist in general. We discuss further these issues next in the
particular (but so important) case of incompressible fluids.
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§8. Euler’s equations for incompressible ideal fluids

For many (ideal) flows of liquids (and even gases), mass density () can be supposed constant
throughout the volume of the fluid and along its motion. This_is equivalent to neglecting
compression and expansion of these fluids. We speak of incompressible fluids:

p = constant.

Equations of Engineering Thermodynamics and Fluid Mechanicsare much simplified for an
incompressible fluid. The continuity equation becomes:

iv( ) =0.
Euler’ ions in the presence ravitational field become: _
uler's equagons [ e prgence g gavitarpral eldbgeome: sy

Obviously, we can take the curl of the above formula, which leads to an expression involving
only the velocity field: 5 O [ O]
= X .

ot

Interestingly, as the mass density is not an unknown function any longer for incompressible
flullds, the closed set of equations for (ideal) fluids can be reduced to equations related to velocity
only.

The vector = () is called the vorticity. The equation for the vorticity can be re-written after
a proper development of: : @il Y- (dive N+ ( )= W)
X |= .(awv - 1v +( . —( . .
Using the condition cgiv( ) = 0 and the identity: ivs ) = , we obtain:
o/ot+( . ) 25=) : )( ).
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Together with the definition: = (), these equations completely determine the velocity in
terms of the vorticity. The vector equation (5) is of fundamental importance. To understand it, we
need first to give a hint of what vorticity is physically.

We intend to show that vorticity encodes the magnitude and direction of the axis about which a
fluid parcel rotates locally. For simplicity, we consider a 2-dimensional case in the (xOy) plane.
We observe the deformation along the flow of a rectangular fluid parcel ABCD parameterized at
time t by A(x,y), B(x+dx,y), C(x+dx,y+dy) and D(x,y+dy). Its surface is =dx.dy and after the
time interval dt, the points ABCD at time t have evolved to A’B’C’D’ at time t+dt. It can easily
be shown that: d /dt= ( vx/ x+ vy/ y). Hence, the relative variation#f the surface of the fluid
parcel is given by the divergence of the velocity. de
D B’
We label the angles generated by the flow as: d
=(AB,A’B’) and d =(AD,A’D’). The global / do
rotation of the fluid ‘parcel is given by the .
rotation of the diagonal of the rectangle, which A »
we define as dt. By construction, it is equal to: A
15(d +d ) (see figure). B
Again, this is easy to show that d + d =( vy/ x- vx/ y)dt, or equivalently:
=Ya( vyl x- vx!'y).

Then the quantity , which is characteristic of the rotation, is half the vorticity (in 2-dimensional
space). This result can be generalized to 3-dimensional space with the vector result: =% .
Vorticity is thus directly related to the magnitude and direction of the axis about which a fluid
parcel rotates.

We now come back on the vector equation (5) characterizing the evolution in space and time of
the vorticity. It can be written in another very important form using the flow map function. We
can show that it is equivalent to:



C(C.0.9= CC,0. Owith ()= ((,0),0= (,0).()

This expression is a bit unusual. Indeed, ( ( , t)) can be expended under the 3 components of the
gradient with res%ect to X (in 3-dimensional space), but each component is itself a vector due to
the presence of . That’s why the quantitg defined by ( ( ,t),t)=( ( ,t)). () 1is avector, where
the scalar product is taken between the

,t
components of the gradient and the 3 components of the
vector ().

In order to prove the equivalence between expressions (5) and (5°), we differentiate the relation
(5) with respect to time (material derivative). We obtain:
d_

a=at (. )()= (rc.o.m )

On the right hand side, we have the derivative of a composition of functions which can be easily
computed (exercise below). Knowing that ( ( ,t)) ( ),1sequalto ( ( ,t),t), we end up with:
a_

at(. )O)=C.  )O)

This is the vector equation (5), which completes the proof.

EXercise: Prove that: (TG0t = JO)-

Solution: we first expand explicitly the first term, using the notation X=(X1, X2, X3) and ( ) = (
0,11 0,2 013). We obtain:
(re.nm. ()= + +

0, 0 0,
1 2 3
aXl aXZ 8X3
o[ 0
0.4 () 0
Also, in compact notations: =
Xy X4 Ox
2




The sum above can thus be rearranged as: . L
[6 () J, 0() 0 ,0() 0
0z

[Q) + + [Q)
ox1 0lax ax2 024 ox3 0,3

This gives the result.

Ex%rcise: Prove that if we are considering a space with only 2 dimensions, the vector equation (5)
reads:

o
at (. )()=0.
Similarly, prove that in 2-dimensional space, the equivalent formula:
_ (0.9 = (.. ()
Which can be simplified into:
((,).9= ()

Comment these last two expressions.

Solution: When we consider a flow in a plane, which means in 2-dimensional space (IZD) labeled
in Cartesian coordinates (x,y), the velocity field can be represented as a 2-dimensional vector (vX,
\y). Then, only the z-component of = () is non-zero by definition. This implies that the
scalar product between = (0,0, ®;) and the gradient in 2D is zero. Therefore, the vector equation
(5) reduces to the relation:

Cat (. )( ) =0. The vorticity is thus a scalar, we write: ®, = «, The last expression
becomes a one dimensional partial differential equation: 5" @ + (vx o~ + Vyay') (@) = 0. Applying
a similar method as in the text above, we can show that:

O(Dy(X1, Xz, ), Dy(X1, X2, 1), t) = @o(X1, X2).

This proves the second relations. These two equivalent formulae mean that vorticity is conserved
along paths of fluid particles in 2-dimensional flows.




Exercise: Conservation of circulation. We consider a closed curve build up by fluid particles at
initial time Co. This closed curve will move with the fluid, and at time t, we can represent this
curve using the flow map notation as: C;={ ( , t) : belongs to Qq}.

For an ideal incompressible fluid prove that the circulation of the velocity along the closed curve
C: is conserved along the flow:

$ .d =¢ .d

C Co

t
What can you conclude concerning the vorticity?

Solution: We compute the material derivative (followin%the_flpw of particles): o’ [$c: .d ]. We
have already discussed this kind of calculus in 85. The difficulty is that the boundary of the
integration depends on time. However, as explained in 85, we can write:

d d

.d
gt e 1= Fe g
Then, using the equations of motion: d = (") with the fact the contour of integration is
closed, we end up with the desired relation:
_d_
dt[ﬁCt d ]:O

This completes the proof. The circulation of the velocity along the closed curve C; is conserved
along the flow.

Consequences for the vorticity: Using the circulation (Stokes) theorem, we can write: $c; . d =
[st ().d=Js .d,where Strepresents any surface moving with the flow bounded by the
closed contour Ct. This means that the ith component of the vorticity vector can be seen as the
limit circulation per unit area in the plane perpendicular to the (xi)-direction. Intuitively, it
measures how much a little leaf carried by the flow would spin about the (xi)-direction.

Also, we can understand E?ﬁ/sically what hapé)ens if we are restricted to 2-dimensional space

(2D). In 2D, incompressibility implies that St is a constant of motion: it derives from the
continuity equation which is equivalent to a volume preserving condition (surface preserving
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in 2D). Then, the condition that [s; . d is conserved along the flow, in the limit of very small area
implies that the vorticity is canserved along the flow lines.

This can be formulated as: ¢ ¢ = 0. This corresponds to what we have shown mathematically in
the previous exercise.

Differently, for 3-dimensional spaceé_3_D), there is no constraint on St following the continuity
equation (the volume preservm% condition for incompressible fluids). Thus, conservation of the
flux of vorticity cannot control the magnitude of the vorticity vector.

To conclude briefly this discussion, we have understood intuitively some differences between the
2D and 3D physics cases. As we shall see later, these differences can explain why 2D equations
of Engineering Thermodynamics and Fluid Mechanicscannot have singularities why 3D
equations might. ) o )
We consider the right hand side term (( . )( )) of the vorticity equation:
D

oe=(. ()
As we have shown in the exercises above, this term is not present for 2-dimensional flows, for
which vorticity is conserved along flow lines. Therefore, we know that this is the term which
brings some complications for 3-dimensional flows. This is interesting to get an_intuitive
understanding of it. Rephrased in words, ( . )( ) is proEortlonaI to the derivative in the
t

direection-of-e—alono a vartex hne fa—aA. Ac Y Where - ace s a lanath of an alament of vortey
\CLIAVAVIS AV N RV Ip Ve ) ul\Jlls A VUITVA TITIV, \Wn U7 UD(D}\ }. YVWIIVIV USp TOo UTu |\t||3l.ll UT AT LIvITiernit U VUTTUAN

line. We now resolve the vector v into components vo parallel to the vortex line (of direction ®)
and vL perpendicular to ® and hence to dsw. Projected along the vortex line, we obtain:

1D a() o o+ 1)
T L85y = .08y = . 0S¢

o Dt 0Se 0Se




This gives:

1D, AW, A,

s = s + os ={ ( +3s

(O] (O] (Q) Q)

(0
o Dt 0Sw 0S¢
The first term on the right hand side represents the rate of stretching of the element ds,. The
second term represents the rate of turning of the element ds,,. Then, stretching along the length of
a vortex_ line causes relative amplification of the vortm(tjy field, while turning away from the
Irection, but an increase in the new

)= (O +L(CFos ) ()

® 1 @ 1

vortex line causes a reduction of the vorticity in that

direction.

Summary of important equations for the vorticity (incompressible ideal fluids):

General equivalent equations for the

vorticity, also called the ‘stretching

formulae’.

0

a +(. 0=,

equivalent to

)(),

(C.0.9=CC1. ()
with ()= ((,0),0= (,0).

The equation using the flow map expresses
the fact that vortex lines are carried by the

flow. In 2-dimensional spaces, the vorticity
is carried along by particle paths, its

magnitude unchanged. In 3-dimensional

spaces, vorticity is carried as well, but its

In 2D, the general vector equation (above)
becomes:

(C.0.09= ()
Moreover, the vorticity in 2D is a scalar and

this last equation can be written as:

O\)(q)x(xla XZ, t): q)y(X11 X21 t)) t)

magnitude is amplified or diminished by = o(X1, X2).
the gradient of the flow map. Or equivalently:
2 o 2
o+ (v +Vv ) () =0.
ot *ox Yoy
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89. Potential flows for ideal fluids

We start by restating the Property of conservation of circulation (see §88). We have shown that for
an ideal incompressible fluid the circulation of the velocity along the closed curve C; (moving
with the flow) is conserved:

git .d = gﬁco. d.

However, in the course of the proof (in 88), we have used a mathematical trick (with no
justification) concerning the inversion of the integral whose boundary depends on time and the
material derivative: g ? ct - = ¢ “ ¢ . d . In this section we redo this important proof
completely. It will allow us to state clearfy the minimal assumptions needed to derive this
property (theorem).
We are interested by the material derivative of the circulation of velocity on a closed contour:

.d . The closed contour is supposed to be drawn in the fluid at some instant of time and

we assume that this corresponds to a fluid contour, build uP by fluid particles, which lie on this
]gontour.ISee the figure below for illustration, where only a few fluid particles have been pictured
or simplicity.

Time evolution

—_—

A few fluid particles
on the contour

In the course of time, these fluid particles move about with the flow and thus the contour moves
with them accordingly. We calculate the material derivative of the velocity circulation bounded
by this contour:

d
atl d1l
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\Sr
grested in the

First, this is really the material derivative that we need to evaluate, as _
e@”In the figure

change of the circulation round the fluid contour moving with the flo
above), and not round a fixed contour in space coordinates.

Then, we write the element of length in the
contour asd =0 , where d is the difference
between the radius vectors of the points at the
ends of the element of the contour d . In this
proof, we use the symbol &' for the
differentiation  with respect to space 0
coordinates and 'd’ for the differentiation with
respect to time.

Then, the circulation of velocity can be writtenas ¢ .d =¢ .§ . In differentiating this

integral with respect to time, we need to consider that not only the velocity but also the contour
itself changes, along the flow. That’s why we need to differentiate both v and o . This leads to:

d d dd
_ dtf$ .51=¢ des+$ .dt. _
The second integral on the right hand side Is trivial to compute after writing the integrand in
g 4
the following form using simple algebra: . ) q- o ( ). This gives after integration
dt t 2
on a closed contour:
dd
$ gt =0
d d
This proves the mathematical identity presented previously: d [ .61=9¢ .0 . From
t dt
Euler’s equations for isentropic fluid (not necessarily incompressible), we can write:
d
d =— (.
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d

Then, this is easy to conclude that § " .5 =0, since:
dt
d d
ats =6 ( dt)s =¢ - (h).3 =0.
We end up with the property of conservation, which completes the proof:
d
datl$ d1=0

¢ .d =constant (along the flow).

Therefore, for an ideal fluid, the velocity circulation round a closed fluid contour is constant in

time: this is also called the Kelvin’s theorem. We can remark that this property ?§sumes
Euler’s equations for an isentropic flow. In fact, we need to be able to write P as a

p

gradient of some function. This is the case for an isentropic flow for which the relation s(p,
)=constant poses a one to one relation between pressure and mass density.

From the law of conservation of circulation (along the flow), we can derive another essential
property concerning vorticity. We consider an infinitely small contour (build up by fluid
particles) moving with the flow and we assume that the vorticity is zero at some point alon? this
path. We know gStokes theorem) that the velocity circulation round this (infinitely small) closed
contour is equal to .d = .d ,whered is the element of area enclosed by this small
contour. At the point where =, the velocity circulation round this small contour is thus also zero.
In the course of time, this contour moves with the fluid, always remaining infinitely small. Since
the velocity circulation is conserved along the flow, it remains equal to zero for all points of this
path, and it follows that the vorticity also must be zero at an¥ point of this path. Therefore, we
can state that: if at any point of some trajectory followed by fluid particles the vorticity is zero,
the same is true at any point of this trajectory.



Note that if the flow is steady (“ 4 =_ ), streamlines coincide with paths described in the course of
time by some fluid particles. In this case, we can consider a small contour that encircles the
streamline. In particular, if it encircles the streamline at the point where the vorticity is zero, this
property is conserved along the streamline. This means that for steady flow, the previous
statement holds for streamlines: if at any point on a streamline, the vorticity is zero, the same is
true at all other points on that streamline.

We continue the argument assuming the flow is steady. We consider a steady flow past a material
body with the much reasonable hypothesis that the incident flow is uniform at infinity. This
means that its velocity is constant at infinity, and thus its vorticity is zero at infinity. Following
the previous statement, we conclude that the vorticity is zero along all streamlines and thus in all
space. In fact, this is not exactly correct as the r|?roof that vorticity is zero along a streamline is
invalid for a line which lies on the surface of the solid body, since the presence of the surface
makes it impossible to draw a closed contour encircling such a streamline! Of course, the
physical problem of flow past a given body has a well-defined solution. The key point is that
Ideal fluids do not really exist: an%/ real fluid has a certain viscosity, even small. This viscosity
may have in practice no effect on the motion of most of the fluid, but, no matter how small it is, It
will become essentially important in a thin layer adjoining the surface of the body. We come
back on the mathematical description of how real fluids behave in the following sections. For the
moment, we keep the point of view of ideal fluids, knowing that there is a boundary layer around
a solid body inside which this (ideal) description does not apply.

A flow for which the vorticity is zero in all space is called a potential flow, or irrotational flow.
Rotational flows correspond to flow where the vorticity is not zero everywhere. Following the
discussion above, a steady flow past some material body, with a uniform incident flow at infinity
must be potential.

w



Another consequence of the theorem of conservation of circulation is that, if at some instant, the
flow is potential throughout the volume of the fluid, we can deduce that this will hold at any
future instant. This is also in agreement with the equation for the vorticity, derived from Euler’s
equation: ° 5= [ x ], which shows that if = at time t, it holds at time t+dt.

We now derive some general simple properties of potential flows, which are very useful in
practice:

First, we have proved the property (theorem) of conservation of circulation, under the
assumption that the flow is isentropic. This means that if the flow is not isentropic, this
law does not hold. Therefore, if a non-isentropic flow is potential at some instant, the
vorticity will in Tgg]eneral be non-zero at subsequent instants, and the concept of potential
flow is useless. Therefore, all what we discuss next assumes that the flow is isentropic.

For a potential flow: § .d = 0. It follows that closed streamlines cannot exist. Only in
rotational flows, closed streamlines can be present.

If the vorticity (vector) is zero =, this implies that there exist a scalar potential such that:

With the Euler’s vector equation, we g_et: ) '
a% Vil
(aa+2+hn)= .

Then, the function inside the gradient is not a function of coordinates and only depends on
time:
2
Vall

at+2+h:f(t).

Here, f(t) is an arbitrary function of time. As the velocity is the space coordinate gradient
of the scalar potential: ¢, we can add to ¢ any function of time without modifying the
velocity field. In particular, we can make the sybstitution:

o— 0 +?fdt.
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This means that we can take f(t)=0 without loss of generality in the above equatlon
For a steady (and potential) flow, we can simplify the equatlon given in (iii) with °
0 and f(t)=constant:

» + h = constant.

This is the Bernoulli’s equation. However, there is an important difference with the
Bernoulli’s equation established in the general case (§5), where the ‘constant’ on the right
hand side is constant along any given streamline, but different for different streamlines. In
potential flows, the ‘constant’ (above) is constant throughout the fluid.

An important physics case, where potential flow occurs, concerns small oscillations of an
immersed body In a fluid. It can be shown that if the amplitude of oscillations is small
compared with the dimension of the body, the flow past the body is approximately
potential. The proof is left as an exercise below: the idea is to show that throughout the
fluid / ot = and thus the vorticity in the fluid is constant. In oscillatory motion, the
average of the velocity is zero, and then we establish that this constant is zero.

Potential flows for incompressible fluids. We first recall that we define an incompressible
fluid by: p = constant, throughout the volume of the fluid and its motion. This means that
there cannot be noticeable compression or expansion of the fluid. Following the
continuity equation, this implies: div( ) = 0. We finally recall that, for an incompressible
fluid, we have: de = 0 (always with the isentropic hypothesis). This implies that € is
constant, and since constant terms in the  energy do not matter, the energy flux density for
an incompressible fluid becomes: p (‘2 >+ P/p).

Similarly, the enthalpy h can be replaced by P/p in the equation established in (iii).
This leads to: )

\Vall
ato+ P/p = f(t)
Now, we combine the two equations: div( ) =0and = ()=(or=

(9))-
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We get:
A(d) =0.

This is the Laplace’s equation for the potential ¢. In order to solve this equation, it must
be supplemented by boundary conditions (see 86). For example, at fixed solid surfaces,
where the fluid meets solid bodies, the fluid velocity component normal to the surface
(vy) must be zero. For moving surfaces, it must be equal to the normal companent of the
veqocny of the surface (which can be a function of time). Note that the following relation
holds: vy, = ®,. Therefore, the general expression of boundary

conditions is that ®;, is a given function of coordinates and time at boundaries. We show
EOIVV to solve the Laplace’s equation with specific boundary conditions in some exercises
elow.

Two other (less simple) consequences of the Kelvin’s theorem:

Vortex lines move with the fluid: consider a tube of particles, which at some instant forms
a vortex tube, which means a tube of particlg with a given value of:
.d =K.

Then, at that time, the circulation of the velocity round any contour C’ lying in the tube
without embracing the tube is zero, while for any contour embracing the tube (once), the
circulation of velocity is equal to K. These values of the velocity circulation do not
change moving with the fluid. This means that the vortex tube remains a vortex tube with
an invariant: K =¢ . d . A vortex line is a limiting case of vortex tube and therefore
vortex lines moves with the fluid (under the hypothesis of the Kelvin’s theorem).

The direction of vorticity turns as the vortex line turns, and its magnitude increases as the
vortex line is stretched: the circulation round a thin vortex tube remains the same. As it
stretches the area of the section decreases and thus the vorticity (~circulation/area)
increases in proportion to the stretch.
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Summary of some important relations for ideal fluids:

In 2-dimensional space the term on the right
hand side comes to zero and the vector

equation is reduced to:
d

dt = .

=constant. Incompressibility condition.
0 () Vorticity equations (general).
= [ x )1
ot
0 Vorticity equations (incompressible fluid).
a o+ 0= 0.

The circulation  of the velocity along the

closed curve C;  (moving with the flow) is

conserved (Kelvin’s theorem):

Incompressible (ideal) fluid (isentropic

flow).

ot + 2 +h=f().

¢ .d=¢ .d.
Ci Co

Potential flow: =(¢). Potential flow.
o VP

Potential and steady flow:

V2

"2 +h = constant.
This ‘constant’ is constant throughout the

fluid.

Potential flow (steady).

Potential and incompressible flows:
o VP

Bt + 2 +Plp=1t).
A($) =0.

Potential flow (incompressible).
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810. Real fluids and Navier-Stokes equations

We now study the effect of energy dissipation, occurring during the motion of a fluid, on that
motion itself. This process is the result of the thermodynamic irreversibility of the motion. This
irreversibility is _alwa?/s present to some extent, and is due to internal friction (viscosity) and
thermal c)onductlon. n the following, we always assume that the fluid is incompressible (
=constant).

In order to obtain the equations of motion of a viscous incompressible fluid, we have to include
some additional terms in the equations of motion of an ideal fluid.

I.  Firstthe eowatio_n of continuity, as it is clear from its derivation, is equally valid for any
~ fluid, whether viscous or not. ) ) )
ii.  Then, Euler’s equations requires modifications, that are described this section.

We have seen in §5 that Euler’s equations can be written in the form:

%pvid\/:— ngl_[ikdzk.
k=X,y,Z

Where ITjk is the momentum flux density tensor (of rank 2): it depends on 2 indices i and Kk,
running for X, y, z in 3-dimensional space. For ideal fluids, we have ITjx = pdik + pviVk (with &k =
1 if i = k and 0 otherwise), which represents a completely reversible transfer of momentum,
originating from the mechanical transport of the different particles of the fluid from place to
place with pressure forces acting in the fluid. As already mentioned, the hypothesis behind ideal
fluids is that each particle pushes its neighbors equally in every direction. This is why a single
scalar quantity, the pressure (p), is sufficient to describe the force per unit area that a particle
exerts on all its neighbors at a given time. Then, the acceleration of the fluid particle results from
the pressure differences.

For real fluid, for which energy dissipation in the fluid is not neglected any longer, the viscosity
or internal friction is due to another, irreversible, transfer of momentum from points where the
velocity is large to those where it is small. This means that if a fluid particle



moves faster than the average of its _neighbors, then friction slows it down. The equation of
motion for real fluids can then be obtained by modifying the momentum flux tensor accordingly
[Tik = pdik + pvivk + IT'ik, where I’y designs the part of the flux density due to viscosity. A general
form of IT'y can be established using the fact that processes related to internal friction occur in a
fluid only when different particles move with ditferent velocities, such that there is a relative
motion between various parts of the fluid. Hence, T’ must depend on the space derivatives of
ﬂﬁe ]\c/elocgg}l. As a first approximation, IT'j can thus be written as a linear combination of terms of
the form “" .

Oxx

This way of thinking can be continued to obtain the general vector equation of motion of
incompressible viscous fluid, for which the viscosity is determined by only one coefficient:
d 0 1 U

it = (- HO=—p @+ p
(6)

This is the Navier-Stokes (vector) equation, first established by Navier in 1822 and then by
Stokes in 1845. Other derivations have been proposed in between by Cauchy in 1828 and Poisson
in 1829, but the history has only kept the names of Navier and Stokes. Here, 1 > 0 is called the
viscosity coefficient (precisely the dynamic viscosity), while v =", is called the

kinematic viscosity. In Cartesian coordinates, we can write equations (6) as a set of 3 equations
for the 3 components in X, y and z:

op
Vy -
0 0 0 0 1 ox
(C+v AV T )yl "
+V +vVv +V vy|=— P A
ot X ox Yoy ‘6z v D_R +H[Vy].
z 0
y p
V;
op
[0z]

Some general comments are in order:

i.  In general the viscosity coefficient is a function of pressure and temperature of the fluid.
As pressure and temperature may not be constant throughout the fluid, the
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viscosity coefficient alsa. may not be constant throughout the fluid. Obviously, the
wscosﬂi/ coefficient is much larger for glycerin than for water. Typical values at 20°C are
5 =0.01 cm?/s for water, 0.15 cm?/s for air and above 6 cm?/s for glycerin.

Remark that the unit for " is in cm?/s as be seen immediately from equations (6). Also,
we can mention that the dynamic viscosity () of a gas at a given temperature is
independent of the pressure, while the kinematic viscosity (") is inversely

proportional to the pressure. Also, it can be shown that the kinematic viscosity of a gas is
about: Av, where A is the mean free path and v the thermal speed of molecules (of the
gas), of the same order of magnitude as sound speed. It presents the correct unit (in
length/time?). With this expression, we understand that viscosity is a vestige of the
continuum limit based on the molecular nature of the fluid while Euler’s equations,
corresponding to zero viscosity, set this molecular length scale to zero (see §2).

The Navier-Stokes equations (6) represent a vector equation (with as many equation as
dimensions of space), which generalizes the Euler’s vector equation due to the presence
of a diffusive term in ", A . The convective term in ( . )( ), which appears in the
material derivative, is not affected by the internal friction phenomenon.

The Navier-Stokes equations (6) need to be comple_mented by the continuity relation for
incompressible (real) fluids, div(v)=0, as well as initial and boundary values to

compute the velocity field for later times t > 0 (next sections). Of course, in the presence
of external forces, we can add a term in *, ., to equations (6).

A simple derivation of the viscosity term can be proposed, without the use of the tensor
formalism. The idea is to make the parallel between two properties: (1) the physics
property that frictional forces counteract at each point the deviation of the velocity field
from its local average and (2) the mathematical fact that the deviation of a function at a
point from its average value on small surrounding spheres is measured by the negative of
the Laplace’s operator (A). This implies trivially that frictional (vector) forces must be
proportional to A . Adding such a term to Euler’s vector
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equation, we obtain the Navier-Stokes vector equation (6) for incompressible fluids. We

let the justification of the equivalence between (1) and (2) above as an exercise. The key
oint here is to see the intricacy between the physical intuition and mathematics: once we

faveér;e physics idea (1), then equations (6) is a direct consequence of the mathematical
act (2).

Using equations #,6), we can verify that the presence of viscosity results in the dissipation of
energy, which is lnal_lly transformed into heat: this must be a direct consequence of the Navier-
Stokes equations (6). The calculation of energy dissipation is quite simple for an incompressible
ﬂuiél filling a volume of space Q. Indeed, the total kinetic energy for the fluid contained in
reads:

1
Ex=p/ ~ 2dV (with p = constant) .
Q2

Then, it can be shown easily that Ex is decreasin% in time under a flow following the Navier-
Stokes equations (6). Precisely, we can compute for a 3-dimensional space:

3 3
dEx
=y | )PdV=—nX]] ufdv<o.
[ i
dt
i=1 O i=1 ©
When the viscosity is zero (Euler’s equations), we find that the kinetic Igner%y IS conserved for an
incompressible fluid (as already shown), while for viscous fluid 4"~ < O: friction transforms

Kinetic energy into heat.
Exercise: For a 3-dimensional space, prove that:

3 3
dEx
=—pny | )PdV=-pn ] | ufdv<o.
i i
dt
i=1 Q i=1 ©

Where Eg is the kinematic energy of the incompressible fluid contained in the volume Q.

At boundaries of the volume containing the fluid (labeled as S in the following), we assume that
the fluid is at rest with vn=0. o _ )
Solution: We compute the time derivative of the kinematic energy:
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1
I

=p [~ dvi=]  p[ 1dv=] .[-p(. ) )-  (p)+nA ldV.
dt a Q 2 Q ot Q

There are 3 terms to be calculated. The first 2 terms are zero. For the first one, we find using the

well-known vector identity for ( . )( ) and integrating by parts:
1 1 1
[ 1. HOndv=l  — . (yav=- " Idiv()dv+ [ .d =o0.
Q Q2 2 Q 2'S

Similarly, we have: Jo .[  (p)]dV=—[adiv( )pdV +[sp .d =0.Finally, we are left with
the last term proportional to the viscosity:

dEk

=n/] .[A 1dV.
dt

Q
The integrand: . [A ] can be expanded as: vi. [Avi] + Vo. [Av,] + V3. [Avs]. Each of the 3

integrals (like |  vi. [Av1]dV) can be transformed using integration by parts. We obtain:

Q
3
dEk
=y | (v)Pdv<o.
dt i
i=1 Q

Consequently, the kinetic energy is decreasing in time, which reflects the losses due to friction in
a viscous flow. It is also possible to write the last formula as:

_:_nj (v3.d .
dt

Finally, we write the vector equation for the vorticity by taking the curl of the Navier-Stokes
equations. We obtain: 0
_ =[x OI+vAC ().

ot
Equivalently, in a form generalizing the stretching formula to (incompressible) viscous fluids:
d 2

a=at (. =0 )( )+ VA( ) with = ()
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In this expression, we recognize transport, stretch as well as diffusion of vorticity. Note that even
if the vorticity is null at initial time, it does not imply that it will last for later time since vorticity
can be created by boundary conditions. Also in 2-dimensional space, we obtain:

d

dt = VA( )
Here, only one component of is non zero: the vorticity is thus a scalar quantity. Vorticity is
transported through convection and diffuses. Of course, in the absence of viscosity (v = 0) we
find again that vorticity is a conserved guantity in 2-dimensional space.
811. Boundary conditions for real fluids

We must also write down the boundary conditions on the equations of motion of a viscous fluid.
There are always forces of molecular attraction between viscous fluid and the surface of a solid
body, and these forces have the result that the layer of fluid immediately adjacent to the surface is
brought completely to rest, and adheres to the surface. Accordingly, the boundary conditions
require that the fluid velocity should vanish at fixed solid surfaces: = 0. It can be emphasized that
both the normal and tangential velocity must vanish, whereas for an ideal fluid, the boundary
conditions require only that the normal component vanish. Obviously, in the general case of a
moving surface, the velocity (vector) v must be equal to the velocity of the surface.

We consider one example to illustrate how these conditions operate together with the equations
of motion for a real fluid. Consider the following viscous incompressible flow between two

stationary plates located at y=0 and y=1, with the notations indicated on the figure. This is
gbwous_lél a gD configuration, where only x and y component (in Cartesian coordinates) should
e considered.

We are looking for a stationary solution of Navier-Stokes equations of the form v=(u(x, 2/), 0).
Indeed, the flow is directed only_alonlg the x-axis. With: p=p(x) and p(0)=pl, p(L)=p2. The
continuity equation for incompressible fluid gives oxu = 0, where we use the standard

46



notation 0y = 0/ 0x. Hence u(x,y)=u(y) and v=(u(y), 0). The Navier-Stokes equation for the only
component to be considered reads— — —

ln 82 82 6tu +u 6Xu =- o 6Xp + [6?(Xu + 6yyu] where 6XX = (6x) and 6yy = (ay) .
Where we have: diu =0, oxu =0 and dxxu = 0. We OBtaln:
1In —
— p Oxp *  Oyyu = 0 or equivalently Oxp =n OyyU.

With the boundary conditions: u(x, 0) = 0 and u(x, 1) = 0. Since both sides of the equation Oxp =
n_Oywu, depends on different variables, we conclude that d,p = n dyyu = constant, which gives
trivially the result. The velocity profile is a parabola.

We now add a level of complexity to the previous example. There is one plate at y=0. Assume
that the half space y > 0 is filled with a fluid, bounded by a plate (xz-plane) at

y = 0. The fluid is not movinF for t < 0. The plate at the fluid boundary starts to move at initial
time (t = 0) with constant velocity U in the x-direction. We may assume that the fluid starts to
flow due to friction. In this case we look for a solution of the Navier Stokes equations of the form
= (u(x, y, t), 0, 0), where u(x, y, t) = u(y, t) in order to satisfy the continuity relation. The Navier-
Stokes equations read:

1 n
atu = _axp + _ayyu, Wlth ayp = azp = 0.

p p
This implies that oxp = constant, that we may choose to be zero. Then, we are left a the pure

diffusion equation o = v dyyu (with v =",) together with the boundary conditions u(0,t)=U

and the initial condition u(y,0)=0. We can pose this problem for the dimensionless variable : u =
u/U. We obtain: du =v dyyu, u( , 0) = 0 and u(0, t) = 1. Since u is dimensionless, it can only be a
function of dimensionless variable(s), combining the variables y, v and t. There is only one such
variable that can be built . —

Therefore, we can look for u as a function of the variable & = /..

~N A



Hence, we can write: u = F(§), with: 0g:F + 2EF = 0, F(0) = 1 and F(o0) = 0. The solution is
well known: the complementary error function, It reads:
F(&) = erfc(&) = v e exp(—s©) ds.
Finally, we can transform easily this solution to obtain——
u(y, t) = U. erfc (ov0).

In particular, we observe that at fixed distance to the plate, the velocity of the fluid will converge
to the velocity of the plate at the limit of infinite time.

From these examples, we can remark that the solution of a problem for a viscous fluid for which
we take the limit v — 0 is not equivalent to the similar problem solved in the ideal case. Indeed,
the boundary conditions are different in both cases. Then, even if the equations of motion would
be similar in the limit of zero viscosity, the general solution of a problem with given boundaries
would not be equivalent. _ _ o

Finally, we come back to the formulation of the Navier-Stokes equations in the form:

%pvid\/:— ngl_[ikdzk.

k=x,y,z
Here, the index i represents the Cartesian conginates X, y and z. The correspondence with
equations (6) leads to: ITik = pdik —n (“" + ) + pvivk. Then, the expression above is
an axi

exactly equivalent to Navier-Stokes equations (6). The interest of the last formula is that it is easy
to write down from it an expression of the force acting on a solid surface bounding the fluid. The
force acting on an element of the surface is just the momentum flux through this element. The
momentum flux through surface d is > k=xy,. [likdZx. We write the element of surface along the k-
axis as dXx = dZ. ny, where n is the unit vector along the normal (along the outward normal to the
fluid).
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Then, as v=0 at the solid surface, we conclude that the force (along the i-axis) acting on a unit
surface of the body is equal to:

aVi aVk 6Vi 6Vk
Y3 -n(C ~ + )ln =pn —m X(  + )n.
ik Ko K
OXk OXi OXk OXi
k=x,y,z k=x,y,z

The first term is the ordinary pressure of the fluid acting on the surface of the body, while the
second is the force of friction, due to viscosity.

Note also that if we have a surface of separation between 2 immiscible fluids, the conditions at
the surface are that the velocities of the fluids must be equal and the forces which they exert on
each other must be equal and opposite. This is a generalization to the case of real fluids of the

condition of the continuity of pressure for the ideal case.
812. Reynolds number and related properties

We define a macroscopic (dimensionless) number corresponding to the ratio of the strength of the
non-linear effects to the strength of the linear viscous effects. In order to define this quantity, we
need to introduce a characteristic scale U for the velocity and a characteristic length scale L of
the flow. In addition, we write the characteristic time scale as T=L/U. Then, we can pose the
dimensionless parameter we are looking for, the Reynolds number, Re=UL/ . It is obvious to
check that it corresponds to the ratio mentioned above. We remark that the (kinematic) viscosity
has dimension LT, using these characteristic scales. This corresponds to the diffusivity of the
velocity: namely, in time T, velocity diffuses over a distance of order WT. For example, for
water at ambient temperature and pressure, v~1mm/s?, so direct viscous effects diffuse velocity at
a distance of order 1mm in one second. Also, if we consider the flow of water with a speed of 1
m/s in a tank of 1 m, we obtain: Re=106.
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We now introduce the dimensionless variables: (x’, y’, z")=(x/L, dy/L, z/L), t'=t/T, v’=v/U. The
fI\Iawer-Stokes equations can then be re-written using the prime (dimensionless) variables in the
orm:

0 ’é‘t’+( " !)( ¢)=_ r(p') + Rel A

Here, we can check that £’=p/£ U?). With this expression, we can see that solutions present a
scaling invariance — A (A, A°t), up to the limit of the continuum hypothesis. This leads to the
law of similarity: flows which can be obtained from one another by simply changing the unit of
measurement of coordinates and velocities are said similar. Thus flows of the same type and
same Reynolds numbers are similar.

As the Reynolds number is a standard referenced quantity for various flows, this last expression
is useful in order to make some comparisons between the relevant terms of the equation:

i. For example, we may think that we can neglect the viscous term the Navier-Stokes
equations in comparison with the convective term when the Reynolds number is
sufflclentlY large (at small wscosﬂy?. However, the Navier-Stokes equations correspond
to a singular perturbation of the Euler equations, since the viscosity multiplies the term
that contains the highest-order spatial derivatives. As a result, this iS not always possible
to operate this simplification. The high Reynolds number limit of the Navier-Stokes
e(t]%ﬁtl?lns is a very difficult problem, where turbulent effects may dominate the dynamic
of the flow.

ii.  On the other hand, the limit of small Reynolds numbers is particularly simple. For steady
flow of incompressible viscous fluid, the Navier-Stokes equations read:

1 nA

(- ) )=- p (p) + p-

Using the same notations for characteristic scales as defined above, the convective term is
of the order U?/L,. The diffusive term is of the order of magnitude ", U/L2. The ratio of
the two is the Reynolds number (by definition). Hence, the convective term
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may be neglected if the Reynolds number is small, and the equations become linear: —
(ﬁ) +nA = 0. Together with the continuity equation div( ) = 0, it completely determines
the motion of the tluid. It is useful to note that:

— (p) *nA =0 implies A ()=0.

Using these formulae, it is possible to determine the force exerted on a ‘fixed’ sphere (of
radius R) by a moving fluid, having a given velocity U constant at infinity, far away from
the sphere body. This force Is also called the drag force (F). As already shown in previous
sections, the solution of this problem with the Euler’s formalism gives a resulting null
force. Using the Navier-Stokes formalism, in the small Reynolds number approximation,
we expect that the answer is non-zero due to the presence of the viscosity coefficient.
Indeed, it can be shown that F = 6an]R|| ||, with a force parallel to the velocity direction U.
This formula is called the Stokes formula. After a trivial change of reference frame, it
ngves the drag force on a sphere moving slowly in a fluid at rest at infinity. We notice that
the drag is proportional to the first power of the velocity and viscosity coefficient, as well
as linear in the dimension of the body. These are general properties, whatever the exact
shape of the body considered.

Finally, we discuss an interesting physics effect for real fluids: boundary layers that we have
briefly mentioned in §88. We consider a simple example first. Assume that the half space

y > 0 is filled with a fluid, bounded by a plate (xz-plane) at y = 0. We consider that the plate is
fixed and the fluid moves at constant velocity U along the x-axis at y = «. We have solved a
similar problem in the previous section. Here, only boundary conditions are changed compared to
our previous discussion. They read: u(y = oo, t) = U and u(0, t) = 0.

The solution follows:

g
Y 2
uly,t)=U.erf( ) where erf(§) = _ [ exp(—s?) ds
24wt Vn 0
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0.2L boundary layer

E=y/Vvt]

The region in which the velocity field departs significantly from the constant flow U is called
boundary Iai/ler: according to the expression of u(y, t),this layer is proportional to Vvt. Hence, for
fixed time, the boundary layer decreases as 1/VRe.

We summarize the differences between incompressible Euler’s and Navier-Stokes equations:

Navier-Stokes: Euler:

=constant, taken to be 1 (in proper units) =constant, taken to be 1 (in proper units)
0 1 0

—_ = —_

ot+(. X)=-— ®m+ eA o+(. X)=-

div( )=0 div( )=0

v=0 at fixed boundary v.n=0 at fixed boundary

We assume that both types of flows coincide at initial time and that both flows are irrotational at
initial time. Under Euler’s formalism, the flow stays irrotational at all times. Under Navier-
Stokes equations, the effect observed in the example above can be generalized: the flow is
drastically modified (compared_to the ideal case) near the boundary in a region with thickness
proportional to 1/vVRe. In addition, this (local) effect may be a source of vorticity.
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813. The millennium problem of the Clay Institute

With all the knowledge of the previous sections, we can pose the millennium problem related to
Navier-Stokes equations. ) ) ] o ) ]
Given the Navier-Stokes equations for incompressible fluids in 3-dimensional space:

0 1 n
a+(C. ))=— 5 (+ pA anddiv()=0
(NSI)
. . with = ,.tZO).andp?pﬁ t>0). .
Given smooth (divergence free and in |n|)telv(d|ffere(r)1)t|ab e) initial conditions:
= ,1=0).

Given boundary conditions at infinity: the statement of the problem indicates that for physically
reasonable solutions, such that the velocity field does not grow large as | | — oo, the space of
initial conditions is restricted to functions for which the norm of space derivatives of any order
(written schematically as: 16" ) is bounded. Precisely, for any order and for any constant K, there
exists a constant C(a, K) such that:

16 < C(0, K)

(1+1 DK

Here the norm of a function f: Q — IR has to be understood as Ifl = (Jo [f(X)[?dx)%.
Then, prove that:

Option 1: there exists ( , t>0) and p( , t > 0) solutions of (NSI) which are infinitely
differentiable in space and time coordinates (for t > 0), with bounc%ed kinetic energy over
the all space. Precisely, there exists a constant such that:m ( , t)I*d” < constant for t > 0.
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Option 2: there exists a divergence free and infinitely differentiable vector field ( , t = 0)
satisfying the boundary conditions and a smooth external force vector field, such that
there exists no solution of (NSI) infinitely differentiable in space and time coordinates
(for t > 0) and with bounded energy over the all space. In this option, the force vector
field f(x,t) is simply added to the vector equation (NSI). It is assumed to be bounded at
infinity. Precisely, for any orders o and B and for any constant K, there exists a constant
C(a, B, K) such that:

C(a, B, K)

1% 8 (,0l< .
A+ 1+

Options 1 or 2 are equally good to solve the problem stated by the Clay mathematical institute
(CMI) and get the 1 million dollars prize.

Alternatively, instead of taking boundary conditions with strong decay at infinity, we can
consider periodic boundary conditions in space coerdirates for , v and f, and one additional
condition for the external force: 10 &% ( , t)I < ©(™ ). Then, options 1 and 2 can be posed in
a similar way as done above.

At the end, with the 2 types of boundary conditions, we have 4 possible statements of the
problem. The CMI asks for the proof of one of them to get the prize.

In short, this problem raises the question of whether arbitrary smooth (also called regular)
solutions of the incompressible Navier-Stokes equations in 3-dimensional space can be continued
globally from smooth Initial data or not. Either, one needs to prove that initially smooth solutions
with strong decay conditions at infinity (or with periodic boundary conditions) remain smooth for
all times, or one needs to find at least one solution which blows up in finite time.

If this problem is solved positively, it would imply:

L




i.  The existence of solutions: the system described by the equations must have a way to
_evolve in the future. _ ] ) ]
Ii.  The uniqueness: there must not be arbitrary choices for this evolution.

iii.  And the continuous dependence on the initial state: any future state of the system is
determined, to arbitrary finite precision, by the initial conditions to a sufficient finite
precision.

Obviously, a complete answer to this problem is still open. However, what is known is that this
problem can be solved locally! Starting out from divergence free and infinitely differentiable
(smooth) initial conditions ( ), solutions for ( ,t> 0) and p( , t > 0) are unique, depend
continuously on the initial conditions, and remain smooth for at least, possibly short, interval of
time: [0, T*], where T* depends on ( ). It is not known if the solutions exist for t > T*. This last
statement holds for Navier-Stokes equations as well as Euler’s equations. We prove rigorously
this result in the next section.

Then, either a given solution (from a given initial condition) can be continued for all times or it
exists only up to T* and the norm of the solution diverges when t — T*: the solution is blowing
up at T*. Then, schematically, proving the problem globally reduces to finding a bound on the

norm of the solution for all times.
Some interesting partial results are known:

1. In 2-dimensional space, the problem has been solved and there exists smooth and globally
defined solutions. Very roughly, in 2-dimensional space, the dissipation of energy due to
friction is sufficiently strong to prevent blow-up of finite energy solutions. Note that for
the Euler’s formalism, the same conclusion holds, for a simple reason that we discuss in
detail later: in 2-dimensional space, vorticity is conserved as a scalar quantity along flow
lines. The ke Foint_is that for Euler’s formalism, it can be shown that any singularity of
the velocity field or its derivatives of any order is necessarily a singularity in the vorticity.
Then, the conservation of vorticity in 2-dimensional space is sufficient to prevent blow-up
of finite energy solutions.
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2. In 3-dimensional space, if ( , t > 0) is sufficiently small, the problem is also solved
positively for Navier-Stokes equations and there exists smooth and globally defined
solutions. Much effort has been spent on characterizing smallness, in terms of smallness
of initial conditions, of the viscosity being large, or of the solution being in some sense
close to some known special solution. Physically, the effect of the diffusion

term ", A is so strong that any perturbation coming from the convective term (

) is damped away before it could lead to singularities. Intuitively, if fluid equations for
water are in danger of developing singularities, we replace water by honey, sufficiently
viscous, and no singularity can develop. Obviously, these kinds of results are not
available for Euler’s equation, where the viscosity is absent.

3. Finally, another class of partial results known to hold for Navier-Stokes equations, but not
for Euler’s formalism, concerns the existence of the so-called weak solutions (J. Leray
1933). In fact, solutions of Navier-Stokes equations can be continued past the time of
their first possible singularity as weak or generalized solutions. We do not want to
describe this mathematical issue here. This means that equations are satisfied by weak
solutions in an average sense but not point by point. Weak solutions exist globally in
time. However, they are not known to be unique!

From these first comments, we understand that the difficulty of the problem comes from the
relative balance between the quadratic term and the diffusive term in_equations while the
evolution in time is realized. Similar observations have been done in 87 for much simpler
dynamical systems. Indeed, for the one dimensional equation: “s = —u + u®, we have shown
rigorously that there is a global existence of solutions with small initial data and local existence
gln tlamg} ofasolutlta)ns with large initial data. Also, for the one dimensional equation:

W4 AU -4y YW = 0, we have noticed that a (unique) global smooth solution may not

ot ox ot ox
exist in general.
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Clearly also, when the quadratic term can be neglected in Navier-Stokes equations (NSI), we
obtain a much simpler system following:

0
ot =~ (p) +vA [with div( )=0].
Where we have posed =1. Taking the divergence of the last expression, we obtain a single

equation for the pressure field Ap = 0, which decouples the pressure field dependence in space
from the velocity field.

This system of equations (for= ( ,t>0)and p=p( ,t>0)) can be solved according to initial
and boundary conditions as given, which justifies the conclusion of point (2) mentioned above.

For the general form of the Navier-Stokes equations, it is also possible to take the divergence of
the equations. Then, the Laplace’s operator of the pressure is more complex. Indeed we need to
consider the divergence of the quadratic (convective) term. With simple algebra, we obtain:

Ov: Ov;

“Ap=X : me-
ij=t ) 1

We have used the notation: (Xi)iz123 = (X, Y, z). This means that the pressure field is a given
function of the velocities at the same instant time. Any change in the velocity field at a position x
affects the pressure field immediately everywhere else. This is the subtle reason why no initial
and boundary conditions have been mentioned for the pressure field in the statement of the
problem at the beginning of this section. Otherwise the problem would be ill-posed. This effect is
a direct consequence of the incompressible condition, which assumes that the sound speed is
infinite compared to the magnitude of the flow speed. This implies that sound waves can carry
any perturbations of the pressure field ( p) instantaneously across the entire volume of the fluid.
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Finally, we conclude this presentation of the millennium problem by a remark concerning the
@nteriplay between Euler’s and Navier-Stokes equations. The statement of the millennium problem
is related only to Navier-Stokes equations in 3-dimensional space. However, as we have seen, the
case of small Reynolds numbers is not difficult, when the quadratic term can be neglected, or at
least do not dominate the evolution in time of the velocity field, while the case of high Reynolds
numbers is really hard. Indeed, in this case, turbulent effects can appear that could lead to
divergent solutions: that’s what we need to understand. That’s the reason why the Euler’s
formalism can be thought of as a good ‘laboratory’ to approach the Navier-Stokes one in the
latter case. Indeed, we can expect that, under some conditions, a result which is valid for any
finite, but very large, Reynolds number is also compatible with results concerning infinite
Reynolds number (Euler’s formalism). This is not a general statement but it justifies that we can
gairglideas from the infinite Reynolds number scenario to enrich the discussion of the millennium
problem.

814. Bounds and partial proofs

As it is clear from the statement of the millennium problem (814), we can gain a deeper view of
how to approach it by proper definitions of bounds on the norms of functions or their derivatives.
Assuming that we have such definitions, it may be possible to apply this formalism to (NSI)
equations in order to find upper limit to the magnitude of velocity field and its derivatives, and to
relate such results to energy dissipation. This is the purpose of this section to give a precise
content to the formalism and answer as much as possible the last open points.

We recall some basic definitions and notations for continuous real valued functions defined on a
set Q (that can be the set of real numbers IR or an interval [a, b] of IR), f: Q — IR.

All the mathematics_we introduce in this section is useful for the millennium problem. We
present them in the simplest way, avoiding the technical jargon as much as possible. In order to
simplify the presentation, we assume first that f depends on only one variable x (a real
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number contained in Q). When f is measurable on Q, we can define a norm of the function f: Q
— IR as:
1

p
IflLp = ( [f(x)Pdx) with p > 1.
o)

This defines in parallel the set of functions for which Ifl; p(q) is finite:
Lp(Q) = {f Q — IR, ||ﬂ||_p(g) < OO}

Note that Ifl p) is really a norm in the mathematical sense, with L°(Q) being a Hilbert set. It is
called a Lebesgue’s set. We do not need to enter into the details of these notions here. In words, it
means that L"(Q) is an abstract vector set (of functions) that allows len%th and angle to be
measured. In this sense, the norm defined above represents a length in L°(€2). In what follows,
what we need is to consider mainly the case: p=2, functions which are square-integrable. Then,
we get for the norm of f: Q — IR (squared):

||ﬂ|9L2(Q) = [ [f(x)Pdx.
Q

The related set of square-integrable functions is:
L Q) = {f Q — IR, ||ﬂ|L2(Q) < OO}
We see that these definitions of L°(Q) and IIﬂIZLz(Q) represent a kind of generalization of what is
well known for the algebra of vectors. These definitions can be extended trivially to functions
‘ahat depend on 2 or 3 or even more real variables, defined on spaces Q of 2, 3 or more
imensions.

In the context of the millennium problem, we are searching for velocity fields (solytions of partial
differential equations if the?/ exist) that must belong to the set of functions L°(Q2), where Q
represents the 3-dimensional space of coordinates IR3. Indeed, the kinetic energy is required to
be bounded over the all 'Face, which meaps that ?ll (,, DI2d” is finite for t > 0, where

I (, DI =T[vx( )+ )+ VAL D] d
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We write the integral over space of the velocity vector squared (JI ( , t)l B yasl 172()

L Q
according to the definition above, extended to the 3-dimensional case. In addition to the fact

that | 1°2 Q must remain finite, as the equations (NSI) contain also derivatives of the

L)

velocity field over space coordinates, these derlvatlves for regular solutions, if they exist, must
also remain of finite magnltude ( length or norm in L%(Q)) up to a certain order that we discuss
later. We write generically 0"V, the derivative of order m for the component i of the velocity
field. Precisely, let (m1, m, m3) be a set of 3 integers, such that
m=mp;+m;+ms.
Then:

amvl ?Vl ml mzam L
Where we use the standard notation: 0™y = ax In %Ihe fOIIOWIng we use also: &; = 5.
For m=0, this is simply the comgé)ngnt iof the V€10C21ty ﬁeéld @ Vi = vj and:

LA(Q) = J. [Vx vy + Vz
For m=1:

16 PPrqy =] z|avJ| d® .
aj_
This represents the length (norm) squared of the first derivative (1-gradient) of the
velocity field in L® (€2). Clearly, this length (or magnitude) must remain finite for all times

for a regular solutlo of (NSI) following the millennium problem.
In general the norm in L (Q) of the derivative of order m (m-gradient) of the velocity

field reads:
3
m
m 2 mpm o, 23
10 Ty =[y Y0 o 0 V| d (withm+m +m=m)
) ) X vy z | 12 3
J=1 my,my,m3

(o]



Therefore, following these definitions, it_is useful to define special sets of functions (here the
velocity fields ( , t): Q x [0, o[— IR®) in terms of the norms in L%(Q) of their derivatives,
namely a category of what Sobolev’s sets: ) )

H(Q) = : Q x [0, oo[— IR® such that € L%Q)and Vm<s, 8" € LAQ)}.

Here, is the 3-dimensional space IR3 or a subset of it, This definition corresponds to Sobolev’s
sets of rank s (integer), defined on L(Q2), with the definition of the derivatives as written above.
A norm (squared) in H(Q) can then be e>§pressed as;

| PO =" P
H Q L°(Q)
k<s
We write explicitly some simple examples for single real valued functions (with =IR):
o H(Q)=L%(Q) 5 )
0 Hy(Q)={f: @ — IR such that f € L (£ and@fgL(Q)(f 5
0 H(Q)={f: Q — IR such that f € L(Q), of € LZ(Q)an felL (52)}
0 H™Q)={f: Q — IR such that f € L(Q), of € L(Q), ..., 0"f € L7(Q)} (m integer)
2 m k 2 0 2 12 m 2
olfl m =% 1o flxq =lofl 2 +lofy 2 +-Ho o f 2
(Q Q Q Q
H) k=0 ) L) L) L)

Note that H*(Q) can also be defined for real values of s. In this case, we need to generalize the
formula above. For simplicity, we provide the new definition for single real valued function:

2 2s"
flns) = I(1 + (€] ) [fE)| 2dE.

Here, (lj‘ is the Fourier transform of f: QQ — IR. Extension of the definition to dimension 3 is
immediate.

Exercise: We consider a single real valued function, f: Q = IR — IR. We note f its Fourier
transform. Prove that there exist 2 real numbers c; and ¢ such that:

2

28" 2 2 s
[+ yirelde<it s < A+ Y If(8)l dé with s integer.

1 H) 2
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Remark: based this property, it 1s_ then possible to prove that J(1 + |§|§)°F(§)|2 dg is equivalent to
the standard norm (squared) in H*(Q) even when s is a real number. Solution: a few hints. With
(&) = 1*E™(€), we can show that:

17 s() = 11X < £} )P d&.
H Q

Then, we need to find, upper and lower bounds of the term 3 < &%, They are given by terms
proportional to (1 + [§[)”.

A final important definition, clearly needed to approach the millennium problem, is the set of

bounded and measurable velocity fields on a set Q = IR® at a given time t. We define:
I ooy = {smallest C>0,1 ( ,t)l <C for almostevery in Q} =1 I 0o (t).

Then, the set of velocity fields bounded in Q (for a given instant t), L”(Q), is defined as the set of

velocity fields such that: | [Looq)(t) < co. Obviously, the same definition holds also for any
derivative of the velocity field. For the gradient of the velocity fields, it reads:
10 ILoo(€2) = {smallest C >0, I0 ( , t)l <C for almost every in Q} =maxlo ( ,t)l.
€IR3

In practice, Sobolev’s sets of functions are useful because they inform us that a function and its
derivatives up to a certain order belongs to L°(Q2). Then, it would be interesting to conclude from
this property that the functions belonging to a particular Sobolev’s set are (continuously)
differentiable up to a certain order, to be related to the rank of the Sobolev’s set. This kind of
statement (if possible) corresponds to what is called embedding. In general, a set of functions X
is said to be embedded in the set of functions Y (written as

X c Y? if all elements (functions) in X are also in Y. We start with a trivial example for single
real valued (measurable) functions: L*(Q) c L'(Q).

Then, L°°_(Q%_ is embedded in LYQ), wherelLl(Q) is the Lebesgue’s set of functions such that (Jo
[f(x)|dx) is finite. This means also that L*(Q) contains L*(Q). An important consequence that
derives from this definition is that if X c Y, then there exists a constant C > 0 such that:
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Ifly < C Iflx. The last inequality can also be taken as a definition of X c Y. In the following, it

will be clear how to use this notion in very efficient ways.
Some important embeddl?fﬂ roperties are stated below:
(1) s < timplies that: &2) c Q)
(2) H(Q) c CX(Q) for s > P, (where k > 1 and D is the dimension of space Q),
Ck(Q) = set of functions k — times differentiable in Q, with

k
I ICk(Q) =Y maxld® ().
p:l EQ
Summary of the mathematical definitions and properties for 3-dimensional set

LA(Q) = { : Qx [0, 0o[— IR?, | lp2q) < o0} with | I =] (0% .
0)
Q% [0, 0[— IR*such that € LAQ)andVm=m +m +m <s,
m 1 2 3
H(Q) = { m "2 2 }

0 =0k 8y 0z eL(QY)

with | I’sq) = Y16 1%

L
k<s

I I oo)(t) = the upper value of | ( , t)l in Q.

Embedding:
X c Y if all elements (functions) in X are alsoin Y. If X C Y,
then there exists a constant C > 0 such that: Ifly < C Iflx.
3 D
Hs+k(Q) C Ck(Q) fors> —=—  (wherek>1and D is the dimension of space Q).
2 2
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It is time to use the mathematical notions exposed above in order to progress in the understanding
of the millennium I;;roblem. However, this would be too hard to start directly with Navier-Stokes
equations. That’s the reason why we apply first the above definitions and proPertles to the case of
(incompressible) Euler’s equations. We discuss (mathematically) 2 issues related to regularity of
solutions of the Euler’s equations: (i) the local existence and uniqueness of such solutions anc?f (i)
the role of vorticity. And then, we discuss some mathematical issues for the case of the Navier-
Stokes equations (in the presence of viscosity). We pose: =IR3 (unless explicitly stated
otherwise) and =gonstapt=1. _ )
Also, we write L* for L°(Q2) and similarly for other sets of functions used hereafter.

A last comment is needed before starting the discussion. We often need to estimate differential
inequalities like "¢ < b(t)X(t), where X and b are positive functions. The last differential
inequality can be solved, it gives: X(t > 0) < X(0)exp[Jo" b(s)ds]. In particular if b(t) is a constant
(b) strictly positive: X(t > 0) < X(0)exp[bt]. In addition, if we know that X(t) is bounded for all
times, the only possible solution is then X(t > 0) = 0.

(i) We discuss the proof of the local existence and uniqueness of solutions of the
(incompressible) Euler equations in 3-dimensional space, under the hypothesis that
the initial condition is smooth and regular with strong decay at infinity (in space).
This is not a simple proof. We intend to show the important steps. The interest Is that
it clearly illustrates how to make useful the above definitions and some properties that
come with them.

1. First, from Euler’s equations, it is possible to show that there exists a constant
C > 0 such that:

2
d

1 <CI0 Ioo. 16 1%, (fork = 1).

dt L L
We let the proof of this relation as this exercise (below). For k=0, ¢ 18° 172 is the
t;]me derivative of the kinetic energy which is constant in time (89 and 10) and
thus:
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(i)

a 10° 192=0.
2. For m>1+3/2=1+D/2, where D is the dimension of space, we have already

mentioned that H™(Q) is embedded in CYQ), the set of continuous and
differentiable functions on Q. This implies that there exists a constant A > 0 such
that: | Icl < A I Iym Knowing that we also have in general (from a trivial
embedding) 10 I .o <B | Ic1 (with the constant B > 0), we can write:
10 ILoo <BI Icl <A.BI Iym,
3. Then, using the definition of the norm in H™, I 124m = Yienld® 1215, as well as

items (1) and (2), it can easily be seen that there exists a constant C' > 0 such that:
ML <CIP withm>1+3/2=1+D/2.

2 dt HM — HM -

gt Hgm < C I1°ym .

4. This implies that ( , t) (solution of the Euler’s equations) is bounded in H™ x
[0, T]. Its upper bound is given by (see 87 applied to differential inequalities):

I olym 1
) forT<T*= , ,m>1+3/2=1+D/2.
1-CTIl m Cll m
) 0 F ) OH _ )

5. The uniqueness can be shown by a simple reasoning. Assuming that there exist

2 solutions of the Euler’s equations 1 and o, it is then possible to show that there

exists a constagt K > 0 such that: )

gt I1—= 292 <Kl ilgm+1 2lgm ]I 1 — 215 2.
As we know that K [I 1lym + 1 2lym ] > 0, this implies that ; = .

Next, we discuss the role of vorticity on the regularity of solutions of the Euler’s
equations. We start from the inequality (i.1):



d

16% 1 <Cl8 oo 1% 1% (fork > 1).
L
dt 2 L
Or equivalently:

d
I lkm <K I8 oo I Iym (K > 0).
dt

Here m > 1, as we do not need the embedding relation between [0 I oo and I [ym
which requires m > 1 + 3/2 [see (i.2)].
Note that [0 I oo =10 I oo(t) and we have no way to guarantee that [0 [ oo(t) <

oo at all times. The only statement that we have made (i.4) is that there is a finite time
up to which the velocity field is regular (and not blowing up). Indeed, we obtain from
the above the inequality:

t
I lym <1 olym exp [K [ 10 Iroo dt].
0

Thus, as long as 10 l oo <o in [0, T*], the velocity field ( , t), solution of Euler’s
equations, exists up to T*. Starting from these relations, it is possible to prove another
important theorem concerning solutions of Euler’s equations (from Beale, Kato and
Majda in 1984):

We consider the velocity field ( , t), solution of Euler’s equations in 3-

dimensional space, such that ( , t) belongs to H™ (m>1+3/2) for all

t € [0, T*]. We write = x , the vorticity of this velocity field. Then, T* is
the maximum time for the velocity field to be11n the above function class if
and only if "I I 00 dt = co. In other words, Jo"*I I o dt = oo

is a necessary and sufficient condition for blow-up at time T* for 3-
dimensional Euler’s equations. We let the proof of this theorem as an
exercise (below).

An immediate consequence of this theorem is that there is no finite time
blow-up in 2-dimensional Euler’s equations assuming that the initial
vorticity field is bounded. This can be shown in various ways: we let this
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as an exercise (below). This implies the existence of %Iobal regular
solutions in this context. According to 88 or 89, in 2D, the vorticity is
conserved as a scalar.

Exercise: Consider the velocity field ( , t) solution of the (incompressible) Euler equations in 3-
dimensional space, under the hypothesis that the initial condition is smooth and regular with
strong decay at infinity Sm quﬁl.z -
Prove the inequality (i.1): 4 10" 192 < C 10 I 0. 10" 172 (fork>1).
A similar proof can easily be done in the case gf periodic boundary conditions.
Solution: We start with kK=1. We re-write 10~ 1° as:

L2

16" 172 = f Yo dv =Y ﬁaivﬂz dv.
ij=1 ij=1
The integral is taken over the volume of the 3-dimensional space ( 21 knowing that the velocity

field is strongly decaying at infinity (in space). Then, we take the time derivatives of this
quantity:

3
THG18 B2 =Y [ 6 65 oV dV.
— ij=1
The term in 5 vj can be obtained from Euler’s equations in the absence of external field (in
which we take =constant=1):
3
EVJ +Zva 6& Vj +5jp=0.
o=1
In the following, we do not-write the sum symbol for repeated indices—this is implicit. This
means that Y "1 V,, 0, IS Written (simply) as v, 0. ) o )
Euler’s equations become: a Vj+ Vg 0gVj + 0jp = 0. Next, we introduce 4 vj in the expression of
the quantity 4 10~ 192 .
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We obtain:

3
B 10t 122 =3 — [ 6 6i(V 0uv; + 6jp) dV
i,j:rl

== 0V Oi(Vo OuVj + Ojp) TV (randjareatsorepeatedindices)
,[ aiv,- ai(Va aan + ajp) dVv = I[aiv,- OV, aan + 5iVjVa Oj aan + 5iVj Oj ajp] dVv.

By integration by parts, with the condition of ir;co_mpressibiligr O0uVe = 0 and the fact that the
velocity field (at thus its derivatives) is zero at infinity (boundary surface), we can show very

easily that:
- [}V 61 DoV + iV 63 Gjp] AV = 0.
Explicitly for one term:
I[aiv,-va Oi aan] dVv =-— I[aa[aiVjVa] 6iv,-] dv=- J.[aa[ﬁiVj] Vo, aiVj] dv

With:

1 1
=-"lle [@v)yvl= " li@vyie vi=o.
o i | o ij oo
2 2
Then, we are left with the relation following Euler’s equations:
1d v]

o' 172 =-J[ovov & dV.
L ij 10 oj
2 dt

The term I[aiv,- OiVe 0qVj] dV looks complicated. Also, it does not have a definite sign.
However, we can always write:

— [[6v; Bivy BuVj] AV < |[[6Vj Bivy DuVi] AV,

It follows that: -
L 108 1212 < |3 divy Buvi] dV).

In order to conclude the proof for k=1, it remains to show that |0 [ co. 16" 1P 2isa proper upper

bound for the term on the right hand side. This term is built up by 3 gradients of the
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velocity: we can bound 2 of them by their Euclidian lengths and one by [0 I o0 (by definition of .
I o). Then, the term 10 I o comes out of the integral Altogether, we obtain:

[V BiVa Bavi] AV < A. 10 1 00, zj|av| dV =A.10 oo, 18" 132
] ] J

)=
Here, A is a strictly positive constant. This completes the proof for k=1.

We now consider the general case: k > 1. The proof follows exactly the same development as the
akseg 1. Jndged we have;

10 -1 Yiakekal0V AV with @ = oKt 8,2 & gr and k = ky + ka + ka).
It is ea51er to keep the generic notation 0 in the formula. hen, we can easily show:
2
id v]
11 <[dvdv o dv)
L I aaj
2 dt ?

Again in a similar way as before, we can bound the 2 k-gradients by their Euclidian lengths and
the 1 kgrgdlent bfl 10 I oo, W obtain finally the 1nequa11tfr
i 10519, < C 16 1 00. 161 L2 (for k> 1), which completes the proof (k > 1).

Exercise: Justify the result from Beale, Kato, and Majda in 1984: we consider the velocity field
t), solution of Euler’s equations in 3- dimensional space, such that ( , t) belongs to H™

m>1+3/2) forall t € [0, T].

We write the vorticity = x (., t). Then, T*is the maximum time for the velocity field to be in the

above function class if and only if fo * I oo dt=

Hint: we assume that the following relation holds

L
16 I oo <18 olioo exp [C [ 10 I oo dt] (C a positive constant).
0




Solution: The first part of the proof is trivial: if [o"*I I oo dt = oo,
this implies that | I oo(t) —_1+ o, and obviously the velocity function cannot belong to

H™ (m>1+3/2) for all t € [O,TT*]. For the second part of the proof, we need to justify that as long
as | I oo <ooin [0, T*] (or Jo'*I "l oo dt < o0), then ( , t) solution of Euler’s equations exists up to
T*.

From the inequality (i.1): | lym <1 olym exp ([C [0'16 I o dt]. We conclude immediately that as
lo’rclg as 0 l oo <ooin [0, T*], the velocity field ( ,t), solution of Euler’s equations, exists up to

To complete the second part of the proof, we need to show the following relation: [o™*I I 0o dt <
oo =>]p *l0 I oo dt < oo. This is a direct consequence of the relation given in the statement of the
exercise. This completes the proof.

Exercise:_Prove that in 2-dimensional space Euler’s equations admit global regular solutions ( ,
t) under initial and boundary conditions (with strong decay at infinity).

Solution: This exercise is a direct consequence from the 2 previous ones. There are 3 simple
methods to achieve the é)roof. (1) In 2D, we have the great simplification: | [0V} OV OnVj] AV = 0.
It is equivalent to the absence of the vortex stretching term in the vorticity equation presented in

previous sections. This implies that 10~ 1.2(r2) is conserved (and thus bounded once the initial
condition is), as well as | 1°.21r2). This makes the proof.
(2) Equivalently, we can use the previous result on the behavior of | I oo (t).

Once the vorticity is finite at initial time, there is no possibility for the existence of a blow-up

time: | l oo (t) =1« o0. This completes the proof. (3) Finally, it is immediate to see that the
LP(IR?) norm of the vorticity | 1 pgr2) is preserved for p > 2. This is also a guarantee that
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| loo (t) remains finite for all times. This ensures the existence of global regular solution of
Euler’s equations.

In summary, we have seen how to apply the mathematical notions introduced at the beginning of
this section in order to search for bounds on the velocity field or its derivatives in the case of
(incompressible) Euler’s equations. This has allowed us to prove some fundamental theorems
related to Euler’s equations. We come back to the case of the Navier-Stokes equations (i.e. in the
presence of viscosity), in the context of the millennium problem. The elements of reasoning
follow what we have develozped concerning the Euler’s equations. Namely, we need to check
whether | (t)||2L2 and 16" (t)I° 2 are bounded for all times or not. In the case of Euler’s equations
in 3-dimensional space, we have seen that 10* (t)I°.2 is only locally bounded up to a critical time
T*. However, we could expect that, even if solutions of Euler’s equations could blow up,
solutions of Navier-Stokes would not due to the viscosity term. The idea is that this term could be
sufficient to control the non-linearity of the equations. That’s the reason why the proofs done for
the Euler’s case do not directly imply similar results for the Navier-Stokes equations. Therefore
we need dedicated proofs for the Navier-Stokes case and thus the millennium problem.

We start with the norm of the velocity field (squared): | (t)I%.2. We have already discussed the
time evolution of | (t)I%.2 in §10, where we have shown that:

3
T a1 P2=n] Yo dv.
1,)=1
Ve recall briefly the key points of the proof. First, we have the trivial identity:
¥2thd I ||23L2 =] v at%]vj dV (summation implicit on repeated indices).



;I'he Navier-Stokes equation for the component j of the velocity reads in the absence of external
orce:

V: +V 0 V: +0:p=m0_ O _V:.
P T v T L Vv

We could take into account a regular external force. This would not modify the line of the proof

and the conclusions wauld be similar. Including & v; into™ o | 172 teads to:
2d° | 122 = [ Vi[=Vvq OuVj — 8jp + 1 Ou DuVi] AV.

After integrations by parts with vanishing velocity at boundaries and the incompressibility
condition, it is trivial to show that:
J.[—VjVa ﬁan —Vj éjp] dv =0.

Again, after integration by parts, the last term becomes:

3 2
-[[an Oy aoth] dV=-— .[ > [aal\/j] dv.
a,]=

This gives the result. This term represents the rate of dissipation of the energy. Therefore the

cumulative energy dissipation up to time T is equal to: n fizo" | 3 =1l dV dt.
We obtain:

1
1 I22(T)=EQ©) — 7] [Ylov [P dV dt=E©)—n] 18 122 dt.
L i L
2
t=0 t=0
ij=1

In conclusion, 2 1 12.2 (t) is bounded by the initial energy E(0) for all times as well as the
cumulative energy dissipation (as E(0) — 1 [i=o" [ z3i1j:1|aiVj|2 dV dt > 0). Note that for
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Euler’s equations, the energy is a constant of motion, thus there is no implied bound on the space
time integral of D 7 j=1|0V; Vl{
The situation looks more tavorable for Navier-Stokes equations at this step.

We now discuss the other point: the time evolution of the quantity " 18" I?

the compulaldon is easy:
2 10" 122=[ 0; 81 o v AV = [ & B[~V 8,V — Op + 1 8y Duvj] AV.
Following S|m|IaLa,L%un1e 53 as abagve, we can sumellfy this expressmn into:
2 dt |_2 - a VJ a|va (XVJ T] a| 8|VJ o QVJ dV
=—Iav,8vaéav, dv —nl 2 7.2,

L2 . The beginning of

With the no|tat|%1
2

2 =16 6\Vj 8y 6ov; AV = [l 2 I7 dV (can also be written as [IA 1° dV).

Here, the norm under the integral is the standard vector norm. We obtain at this step of the
calculations: — i 2 )
20 10" P2+l 2 122 == [ & Givy dyvj V.

The integral on the right hand side is similar to the one obtained in the developments done for

Euler’s equations. There is a new term (on the left hand side) related to the viscosity.
We first make a remark concerning the 2-dimensional case: in 2D, | OiVj OV OqVj dV = 0.
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1

d
Then we  obtain (in 2D): '2_ 1t 122 2 +ql 212 2 =0. We conclude that
L
dt L (IR) (IR )
16" 1°2 2 (t)andalsol x 22 2 (t)are uniformly bounded at all times. This is the proof
L
(IR ) L (IR)

of the existence of global regular solutions in 2D. This is a consequence from the fact that the
term | Oivj OV, OuV; dV is directly related to the vortex stretching of the vorticity, which
disappears’in 2D (see previous sections).

In dimension 3 (3D), this is more complicated. After some algebra that we admit here, we can
write:

3 3
n 2 6
~fovove wvdv=cldt 121 1 2< VP o4yt 2 (cand >0)
ijia aj z 2 2 L n
L L 2 L

Note that the algebra needed in order to derive the last formula is presented in the appendix to
this document. It requires the successive use of Hdlder’s, Sobolev’s and scaled Young’s

jl[lﬁqualities.
en: — _
Lal 10t P2<="1 P+ ot 152,
This inequality can be trapsformed using the relgtion:
. lo™ 19.2= aiv,- aiv,- dv =- Vj O aiv,- dav <21l I .
Finally:
1d 1 2 nlaet 1.2 16
e 2<—- 7 +Clo 12.
2 dt L 21 13 n L

In particular, the last relation leads e ipequality:
24t o ||qL2 <C ot 12,

\'



This implies:

16" 172 (0)
L

16" 122 (t) < .
L 1
[1-2C 13" I'2(0)] 2

n L

This proves the local existence of solutions of the Navier-Stokes equations (similarly to the
previous result obtained for Euler’s equations) up to the critical time T* such that:

1
T = |
[2C 18" 1°)0)]
n L
n It
16 It 2
Note that this is because the positive term C 10 | 2 may be too large compared to — B
n L 21 1%
T 12 L
that we may observe a finite-time blow-up of 10~ 1.2 (t).
In summary, we have a set of coupled inequalities:
1 1d nlet 1.2
| 122(T)=E()—n["16" 1?2 dt It 122 <- 4+ Clot 12,
) n
2 L t=0 L 2 dt L 21 172 L
<E(0)

It Is important to notice that It there exists a time T for which:

nle*
TR 1 6 1 2
1
— (M+Clo I z (T)>0. Then lo | 2(t) can only decrease for t > T, and the
21 1% n L L
L
following inequality holds:
n 18t 1*2
_ L
- t>T)+C 18" 152 (t>T)>0.
2 112 n L

L
This means that if the initial conditions are such that:



2 1 1%
L

(t=0) +Clo I
n

6

L

2(t=0)>0.
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Thep the solytion stays regular for all times. Stated otherwise, for small enough initial conditions
I ol“L2 10" oI 2 (given by the above inequality), 10~ 172 (t) is finite for all times, this ensures the
existence (and uniqueness) of global regular solutions.
Note that instead og searching for inequalities for 16> 12,2, we can work with the norm of the
vorticity | = x |72 . The results are absolutely equivalent, but it is interesting to prove this
rigorously. Following a 5|mua{_d%velgpmentsas é)lre\glously, we,can show:

2at | 19 2<="500" 192+ C,l IP2.

Using the inequalityl 1% 2 <B I 122148 12,2 (B > 0) (see appendix to this document), we get:
R e R 1ﬁ| & PP

o ha1 PR<[B.C P21 P2 -T]10" 2.
Then, the following inequality holds *, 4 | 452 < 0 provided that:
B. Cyl of"2l ol 2<™,.

Altogether:

Since | 112 (t) <1 ol*.2, she ineqyality *> o’ I 17,2 < 0 implies that | 1°.2 (t) <| ol*.2 for all
times. Obviously, as | ol 2 = lg” ol32 , the above inequality is exactly equivalent to the
conclusion on the smallness of | ¢l 2 0™ ol 2.
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Finally, we discuss what would be needed to obtain regular solutions for any arbitrary large
initial conditions. We already knlow that | 12,2 (t) is bounded for all times. Wé check af which
condltlbons azvefciﬁuléi find that 15] t 1.2 IIS altso boundedfat all tlrz\es For th|? we catn exprt%ss the
upper bound of the 3 gradien e velocity in a specific way. As previously, we start wi

PP : dffdtg IIGI IIQL2+ I 4 {]Lz —p—Iav a% OV deV Y
After some algebra (admitted here), we can obtain the followmg inequality:

n
—Jovove vdv<s T 1 P +188 1221 B4 ( >0).
ijia o] 2 L L n
2 L

Again, we recall that the algebra needed in order to derive the last formula is presented in the
appendlx to this document. It requires the successive use of Holder’s, Sobolev’s and scaled
Young’s inequalities.

Explicitly, we can write:

I Ba=1 14 =l (,0l'd’].
If we could prove that{.hlst rm js bounded for alLtimes, || I°.4 (t }( 2then we would get:
2ol 10 P2+l 2 1P2< 1 PP+, Ko
Or:

Lot P2<-" 1 P+, K8t 122,

This would imply immediately that 16" 17,2 also is bounded for all times! And consequently we
would conclude on the regularity of solutions of the Navier-Stokes equations (under the
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hypothesis of the millennium problem). In fact, this is what we miss in the partial proofs. We
wpuld, need to find a bound on the norm of the velocity field, not only in L°(IR"), but also in
L*(IR®). An intuitive explanation is given below.

Beyond all these mathematical inequalities, we try to find an intuitive reason why this is so hard
to_f)rove the global regularity of solutions of the Navier-Stokes equations in the context of the
millennium problem.

A key point is to recall that the Navier-Stokes equations are invariant under the transformation:
(L 0=L (A, At)and pa( , t) =Apa(A , A%t).

This means that if the velocity field is a solution of the equations, then the velocity field ; is
angther accgptable solution (by construction). Also, this implies Al ;1% 2 =1 1%, 2 and therefore |
il =AM 172, We can think of this transformation, with A >> 1, as taking the fine-scale behavior
of the velocity field and matching it with an identical (but rescaled and slowed down) coarse
scale behavior of . _ _ _
Along the mathematical arguments given previously, our goal was to find upper bounds on
the maximum energy max| 1°2 (t) and the cumulative energy dissipation |" I3* 172 (t) dt.
(<T L t=0 L

We assume that such bounds exist: we label them respectively as M and C for the field velocity

. Obviously, for 5, these bounds become: AM and AC. The last statement means that each time
we have a Solution of Navier-Stokes equations with bounds M and C, then the_solution 1 is

ossible, with worsened bounds AM and AC. Blow-up can occur when the solution of Navier-

tokes equations shifts its energy into mc_reasmg_lg/ finer and finer scales, thus evolving more and
more rapld(ljy and eventually reaching a singulari )6 in which the scales (in both space and time)
tend towards zero. In such a scenario, we lose obviously the effectiveness of the bounds (and
consequently the control) on the maximum energy and cumulative energy dissipation. For
example, this is possible that at some time, a solution of the equations shifts its energy from a
spatial scale 1/ to 1/2 in a time of order 1/ 2. And if

\'



this behavior repeats over and over again, this is clear that the solution is divergent. This simple
argument gives an intuitive view of the problem.

At this point, we can come back fo what would happen if we could get a bound on | ||4|34 (t) for
all times, With the relation | 1,4 = 73 | I".4 , we understand that the bound in L*(IR”) would
become increasingly better for the velocity field ;; when the parameter A is increased. Under
such conditions, it would be possible to understand intuitively that blow-up could not occur.

815. Engineering Thermodynamics and Fluid Mechanicsin relativistic Heavy-lons collisions

We recall that modern aspects of Engineering Thermodynamics and Fluid Mechanicscover more
materials than liquid and gases in the non-relativistic approximation. As already stated, the idea
of exploiting the laws of ideal Engineering Thermodynamics and Fluid Mechanicsto describe the
expansion of the strongly interacting nuclear matter that is formed in high energetic hadronic
collisions was proposed in 1953 by Landau. Of course, in this context of particles moving at
extremely high velocities, _Englnee_rm% ‘Thermodynamics and Fluid Mechanicshas to be
understood in 1ts relativistic limit, which brings some subtleties to the calculations.
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When colliding 2 fast moving heavy ions, built up with many charged particles (picture 1), the
idea is that a zone of high density of charges will be formed (picture 2). Assuming local
equilibrium and depending on the equation of state of this nuclear medium, this overlap region
may reach the conditions that are described by an average (high) density and (high) temperature.
The local thermal equilibrium means that the microscopic collision time scale
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is much shorter than any macroscopic evolution time scales. The interest of such collisions is
that, having stored part of the available initial energy in compression and thermal excitation, the
collisions produce unique conditions of the nuclear matter not accessible otherwise. In particular,
this hot and dense matter is thought to be composed of strongly interacting quarks and gluons.
The next stage of the reaction is the relaxation of the energy density. The central system is
undergoing expansion, into the direction of largest gradients in density and temperature (pictures
3 and 4), thus reducing its temperature and density.

Recent excPerimentaI results (from 2005 to 2014) provide conclusive evidences that the created
hot and dense matter produced in these collisions behaves collectively and has properties
resembling that of a nearly ideal relativistic fluid, following the theoretical ideas formulated by
Landau in 1953. We can write equations that describe the early stages of the expansion (pictures
2 and 3). The most important assumption under these equations is that the system can reach local
thermodynamic equilibrium in a very short time. All thermodynamic quantities (see 83) of a fluid
element can then be defined under this hypothesis, in the rest frame of the fluid element. The
frame of reference is thus the local rest frame. Next, we assume that the energy density (E/V) and
pressure admit a first order development around their initial values:
€(t, )=eo(t, )+ 0oe(t, )andp(t, )=po(t, )+ dp(t, ).

Neglectig% second order terms, it can be shown that the relativistic equations of motion read

(admitted here):

0 1

ot =" e+ P (p).
The conservation of energy reads:

o€

ot =—(e+p) . .

The energy density is decreasing as the velocity field is diverging ( . > ). Similarly, the charge
density (nyconservatlon reads:



on
a=—(n) . .
We have 6 unknowns (p, €, n, ) for 5 equations (stated above). We are missing the 6th equation,
the equation of state: 0.9
p =p(n, €).

This closes the system. In practice, this last equation can be expressed using the speed of sound:
c=0p(n, €),
S

€

The last equation is not complete as we need to precise under which line the partial derivative is
taken. This is a subtle issue. However, following ideas developed in the non-relativistic case, we
can show that these lines correspond to: s/n=constant, where s is the entropy density (S/V). We
can re-write the equations of motion as:

0 ¢ (p)

. s

ot=— 1+c¢® p
S

In fact, the ideal fluid behavior is only approximate: a (small) degree of viscosity is required for a
proper description of the data (pictures 2 and 3) and the late stage of the expansion needs a
dedicated treatment as it appears to be too dissipative for a macroscopic fluid dynamical
approach. It must be described microscopically. The influence of the dissipative stage on
measured observables is large as the system in expansion spends a large fraction of its history in
this dissipative stage. Obviously, this makes the measurements quite difficult to interpret but this
is another story.
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Appendix: useful mathematical inequalities

Basic inequalities
For real numbers: a> 0, b> 0, integers p and q > 0:
1 1 a® b
B +a =1—>ab< E + F (Young’s inequality).

Proofs: We write: ab = exp[log(a) + log(b)], a>0,b>0. Then, by convexity ofthe

exponential function [el**"" < ge* + (1 — a)e’], we get:

1 1 1 1 1
ab=exp[~ .log(@) + ~.log(b%] < ~.exp[log(@”)]+ ~.exp[log(b?)], with

P q P q q
1

=1- Bandazo,bzo.

Another simple way to make the proof is to consider the real function for positive real numbers:
f(x) =%,” + ¢ — x."We can easily show that f(x) > f(1) = 0. Then, using the relation

x=a b this completes the proof, under the condition ,* + 47 = 1.

From the Young’s inequality, we can deduce immediately the following relation (a, b > 0):

9
1
For any real number & > 0, there exists C such that ab<da’P+C.b% C =" [3p] p- We
) ) )
q
g
a’ b
can write equivalently: foranye>0,ab<e ~ +[e] (a,b=0).
p q

From the Young’s inequality, we can derive the important Holder’s inequality. For sets of real
numbers (&) and (b;), and positive integers p and g, we have:

1 1
n n n
p q
11
+ =1-=Yabi| < Cail) QbilY)  (Holder’s inequality).
P q

i=1 i=1 i=1
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1 1
Proof: We define: A=1Ja /X" la [) gandB=]b [/(X" |b | G Then, we apply the Young’s

i i=1 i i =1 i
igequialit%/ to the product AB and sum over the index i. This gives the result, under the condition:
+ =

pObv?ously., this holds also for measurable real valued functions fand g (QQ — IR):
1 1

o q 1
Ifgl 1 =]If o dx < (It dx) dig?dx)  =Ifip Qg with T+ =1)
Q) L) L(Q)

Here the proof relies on the definitions of A = [{|/Ifl_pq) and B = |g//Igl_pq).

The Holder’s inequality, for p=q=2, corresponds to the well-known Cauchy-Schwarz inequality.
It can be formulated gxpllczltly: ) , )
@1 +a%+ - +ay) (b + b+ - + %) = (arhy + -+ @nbp)2.

For this particular case, a simple geometric proof can be done. We note u the vector (a; , a,, ...,
an)and v(pby, bz, ..., bn), then: = o b,
o o I =111 Feos(, )<I Il I-

This gives the result. Similarly, for real valued functions, we obtain (p=q=2):

2
(£ gdx) < ( ffdx) ( gPdx).
Applications of the Holder’s inequality
For any measurable real valued functions fand g (Q2 — IR), the Holder’s inequality reads:

1 1
If.gl 1 =lif. g dx<dfPdx)  pdigfdx) g
Q)
1 1
= fl.p)lglLq@) (withp, q>1: T4+ =1).
P q

(e}



The integrals are taken over the set Q. In the most general case, Q can be equal to the set IR",
where n is the dimension of space, provided that the integrals are well-defined. The set Q can
also be a bounded subset of IR". For n dimensions of space, the integral [|f. g| dx becomes [|f. g|
dV, where dV = dxX; ... dx, is the infinitesimal volume element Q. Also, we have:

1
w._p(%) = (J|f> dV)p. Note that the inequality holds also for the particular case p = oo, then q = 1.
e obtain:
If. g|||_1(g) < ||ﬂ||_OO(Q)||g|||_1(Q).

Here, Ifl ooq) = {smallest C > 0, f < C for (almost) every point in Q}. This means that Ifl, oq) is
the upper bound of the function f in Q. The above inequality is thus obvious.

The Holder’s inequality can be immediately generalized to different cases, assuming that Q = IR"
or a bounded subset of it.

(i) l+ : +l =1 (withp,q,r>1),f€LP(Q), g€ LYQ) and h € L'(Q), then
p q r
If. g hlLio < Iflpolglidalhiro
1 1 1
iy ~+ =" (withp,q,r=>1),f€L’(Q)and g € LYQ), then f. g € L'(Q) and
P q r
If. glre < L polel e
1_
88 1
(i) “+ = (withp<r<qand0<0<1),  feL’Q)NLYQ), thenfe L(Q),
p q r
and

0 1-6

Il Lr(Q) < HﬂILp(Q)IIﬂ\Lq(Q).

This means that we can interpolate between higher and lower L’(Q) sets to get
something in between. That’s the reason why we can call this relation an interpolation
inequality for LP(Q) sets.
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The proof of the last relation follows from the standard Hélder’s inequality after
writing:

(1-9) 0 (1-9)

r r Or r r r
||f||Lr(Q)=_[ If] dv =] [fl |f| dv<if] | p IIf] I q

0 (O (1-0(Q
0 Q L9§ L)rg

This gives the result.

When the set Q is bounded éin IR"), these inequalities become very useful to derive important

links between Lpglz norms
|nte?3al [a, b]inl
[

(i)

integrability) and regularity of functions. For example, if € is an
n=1), then we get the following properties.
If q > p, then there exists a constant K which depends on Q, p, q such that:

. . Mlipe <K Iflgq) (q=p=1).
This can also be written as:
LYQ) c LA(Q)(q=p=>1).

Explicitly, LYQ) is embedded in L’(Q). A set of functions X is said to be embedded in
the set of functions Y (written as X < Y) if all elements (functions) in X are also in Y.
In addition, the relation between the norms in both sets X and Y is as written above.

Namely, L%Q) c LP(Q) (q>p > 1) is equivalent to the inequality
||f|||_p(g) <K ||ﬂ||_Q(Q),
for some constant K(Q, p, %)q.(Lq(Q) is embedded in L°(Q) can also be stated as: L°(Q)

contains LY(Q), or L°(Q) 5 LY(Q) (g >p > 1). We let this proof as an exercise (below).
This relation means that higher L (S%) norms can control lower ones

(IflLp) < K IflLg>p))- In particular, this implies that functions that belong to higher

LP(Q) spaces are more regular. This is only correct for a bounded set Q.
This also implies that, for any boungpd set €2: _
L'(Q) o L (Q) o L¥P(Q) o L(Q).
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L'(Q) is the larger set. In particular for a bounded set L}(€Q) D L*(€2), which means that
once Jq |f] dV is finite, then the function f: Q — IR" is bounded up.
Exercise: Prove that, for a bounded set Q and gﬂ > p > 1, then there exists a constant K which

depends on Q. p and h that: Ifl,pg) <K | for q > p).
e e and q such that: Ifl P, = K Il G (for g = p)
1 1 1
p r q
ifip (=011 dV) < 1"dv) d 09 dv)
L)
9) 9) 9)
111
with — = (Holder’s inequality).
p g r

11
This gives the result, with K = (Jo 1 dV)? 9 (since Q is bounded).

First Sobolev’s inequalities

We now intend to present some links between the integrability and the differentiability of these
functions. This is an essential task as, at the end, we aim to study solutions of partial differential
equations (for example in the context of fluid mechanics). The general idea is that it seems to be
more difficult to obtain the differentiability than the integrability. We need to develop this idea
quantitatively with precise definitions. That’s the reason why we will define some sets of
functions which involve and index for differentiability and another index for integrability.

We recall some basic definitions. In order to present first the formulae using simple notations, we
start with single real valued functions h: IR — IR. We assume that the derivatives of h up to
order k are well-defined. We note 0"'h (m < k), these derivatives.

oo




Then, we define what is called a Sobolev’s set Wk‘p(IR) as the set of functions h: IR — IR such
that h € LP(IR) and 6™*h € LP(IR). The second condition means that the derivatives of h, up to
order k, belong to L°(IR). As mentioned above, one index (k) stands for the differentiability and
one index (p) for the integrability.

We note:

WHKP(IR) = {h: IR — IR such that ™h € LP(IR) for all 0 <m <k}. (with 6°h = h)
In parallel, we can define a norm on this set as:
[hIP =Y 10"hlPp (IR -

WeP(I
R) L)
m<k

Next, this definition can be extended immediately to functions f: IR" — IR (where n —the
dimensions of space- can be larger than 1). We write the formulae for the particular case n=3,
corresponding to 3-dimensional spaces (3D

Let (m1, m, m3) be a set of 3 integers, such that m = m; + m, + ms. We assume that the

derivatives of the function f are well-defined up to rank k, using the notation:

my
0
="t =0, 6, 6,™ f {witho™=( 7y 1.
Ox
The Sobolev’s set W*P(IR®) of such functions is defined as:
W P(IR®) = {f: IR® — IR such that 6™f € L°(IR®) forall 0 <m =m +m+m <k}
1 2 3
In parallel, we can define a norm on this set as:
K,
I p 3 = Yoo lemMP, 3.
W (IR) myem,+mss L (IR)
k
With:
vV op | mp d
o fli PR3 :j 2 0 f v
+ +m
IR® pem M =M
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Obviously, we observe that the definitions for dimension 3 éor_more generally n) follow exactly
those for dimension 1. Note that the case p = w0, is also well-defined with the definition:
||ﬂ|wk,00(|Rn) = maX ||amﬂ||_00(|Rn) .
The particul 2i al for the Cllowing discussion. We wri
e particular case p=2 is essential for the following discussion. We write:
HL(IR“) :%VCL'%(IR“)

Hk(irn) = {2 IR" — IR such that f € L*(IR") and 6"™f € L*(IR") 3,
foralll<m=mp+my+--+m,<k

Explicitly:

We also use the name Sobolev’s set for H(IR"). Moreover, H*(IR") is a Hilbert’s space with the
inner product:

(u,

vy kon =[dvV[ ¥ ud™v].

H(R)
IR"
mi+---+my Sk
Where u and v are functions that belong to H*(IR").

Note that H(Q) can also be defined for real values of s. In this case, we need to generalize the
formula above. For simplicity, we provide the new definition for single real valued function:

2 2s”
Iflusary = I(1 + €] ) If(gl °dE.
e

Here, f is the Fourier transform of the function f. Then the definition of H(IR) can (also) be

written as: 5 rDA 2
_ H*(IR) = {f: IR — IR such that f € L(IR) and (1 + [§[")*“f € L(IR)}.
Extension to dimension 3 (or n) is immediate.
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We give below 4 important Sobolev’s inequalities that follow the previous definitions and
properties. In general, any inequality which trades differentiability and integrability of functions
1s called a Sobolev’s inequality. We understand below that this trade is one way: we cannot
generally sacrifice integrability to gain differentiability (as already mentioned). In the following,
we always assume that the functions are vanishing at the boundary of Q. If Q = IR", this means
that functions are assumed to vanish at infinity. The theorems are not correct otherwise. Also, we
systematically mention whether the inequalities are given for €2 = IR" or for Q = {bounded subset

of IR
l.

From the relation (1 + [£%)f(&)? < (1 + |§L2)S|f(§)|2 (s >1), it follows the first
embedding theorem for Sobolev’s sets: H(Q) € H'(Q) 5.2 5).
For any functions, u € W*(IR") (1 < p <n), then u € L"™™PY(IR") and there exists a
constant C(n, p) such tha”t: \ap/ap) (. p).. loul )

ul np/(n—p)arNy < C(n, p) . LParN).
This implies also the embeddﬁ]g re aéion): (

lulinp/(n—p)arny < C(n, p) . lulwl,pgrny.
Or equivalently:

WHP(IR™ < Ln—;-gR”).
More generally, if u € W*(IR") (p <n) and p < q < np/(n — p), then u € L(IR") and there
exists a constant C(n, g, p) such that:
__ . ||u|||_C1(|R_n) < C(n, q, ) . ||8u|||_p(|Rn).
For q < "—p, the embedding relation holds only for a bounded subset of IR" (Q):

lulLg) < C(n, q, p) . lulwl,pe).

Or equivalently: WP(Q) < LYQ)
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iv.  The last relation can be generalized to W*P(IR") with the updated result: for any
functions, u € W*P(IR") (kp < n), then u € L™ *)(IR") and
lul n /(n—kpRURn) < C(n, k,fp) .10 uII._p(|Rn I'<
This implies also the embedding relation, for any function u € W*P(IR"):
lalinp/(n—kp)arny < C(n, p) . lulwk,pgrn)y.
Or equivalently:

WKP(IR™) Ln—i'}%w).

A simple view of the above Sobolev’s inequalities can be given assuming a certain behavior for
the function u. Let us assume that u is a bump of size H and length L and this for all dimensions
of the space IR". This means that: y y

||u|||_q(|Rn)~[HqL”] 9 and ||6u|||_p(|Rn)~[(H/L)pL”] P,

Then, we can verify at which conditions we can get a Sobolev’s inequality (involving lul_qgrn)
and loul_pgrmy) for all L and H:
] ] ||u|||_Q(|Rn) <C. ||8u||aLp(|Rn).
Equivalently, we can write:
L = - wh/d<cua(n—pa/p,
This implies that: a=1and ¢ =y —n~ or q =pn/(n — p).
This method provides a generalD intuitive trick to re-derive quickly Sobolev’s inequalities.



Exercise: Prove item (ii). For any functions, u€W(IR") (1 <p<n),thenue
L™ ™P(IR") and there exists a constant C{n, p) such that:
lulinp/(n—p)arny < C(n, p) . ||8u|||_p(|Rn).
Solution: Essentially, the proof uses the Holder’s inequality several times. This kind of proof is

not difficult per se but requires a good organization. First, we need to show the result in the
simpler case: p=1. Then, it will be possible to generalize (see later) to the general case for all p

values. For the case p=1, we need to show that, for any function'u € W**(IR") (1 < n), there
exists a constant C(n) such that:

o . ||u|||_n/(n—1)(|Rn) <C(n). ||3u|||_1(|Rn).
Explicitly, we need to derive the formula: _

n
(™D qv < C(n) (J|ou| dV)™ .
Where the integrals are taken over the all space IR" and thus, dV is a volume element of IR".
The first step is to make a derivative appear using a simple identity:

Xj
U(Xl, ey Xn) =_[ 8ju(... 5>y e )daj.

o0

The derivative inside the integral is taken on the jth variable of the function, and this is this
¥a|r||able which is integrated over. Then, taking the absolute values on both sides, the inequality
ollows:

X.
u(xa, ..., xn)| <J |5,—u(... , aj, ... )|da;.
—00

Repeating this process n-times for all variables of the function u(xs, ... , x,), we obtain a product
from j=1to n. At this stage, we get:

1/(n-1)

Xj
u(...,
|u(X yeen s X )|n/(1’1—1) <[I1J |8_a EREE )|da]
In i ] J ]
As the integrand on the right hand side is pcj)sitive (absolute value), all integrals can be extended
up to +oo. Hence, we can write:
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n— 1/(n—1
n 0 1 n 0 )

ur e <111 |Gulday] =TIl Gulday]
j:]. - J:l -0
The next step of the proof consists in integrating this inequality, over X1, X,
derive a bound for [ju[”™ " dV. We start by integrating over x;:

Xn, In order to

.....

1
0 © N o0 B
[ wni(n-1).ax </ Mifouda 1 .dx.
1 i 1
—0 _ooj:]_ —0

But, for what concerns the integral over x;of the right hand side part of the inequality, all terms
that do not depend on x;are thus constant of X3, and can then be taken out of the

1
integral over x;. This is obviously the case for [J-*,,|61ulda;]""" in which the variable xyis
integrated over. We obtain:

1 1 1
© n 0 T 0 T © n 0 T
Iomid (ouida] . dxa =1 Owidai] T T [Gulda] . dxy.
This is the stage where the  Holder’s  inequality  can be applied to
T
[ TT%=al]-"l0juldag]™ . dxy. We recall that: With pg + + + pn = 1.
1 1
If.f...f dx| < (([f P dx)py ... JIf [*dx) pn
12 n 1 n
This leads to:
1
1
— n—
0 n o0 -IT n 00 1
J [0 leulda;] i <[[1J] |oulda;dx]
TiIF2 o =2 -
All together at this stage, we have:
1
1 T
00 o0 0 o0
] wnm-D.e <[l |oulda ] I 1ouldxda ] .
1 11 i 1
o0 —00 —00

FP=NY

,
3

n
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— 1 2
1 1 1
o 0 © 0™ n o -
<[Jf |:uldx,das] S0 owidad  TTLSS |Cjuldxday]  dxa.
=3

Again, for what concerns the integral over x,0f the right hand side part of the inequality, all terms
that do not depend on x,are thus constant of x,, and can then be taken out of the
1

integral over X,. This is the case for [[J-*.|0,udx.da,] o in which the variable x; is

integrated over.
1 1

Be careful: this is not [/ |5,u|dadx,] . The term [[* 01ulday] o is still in the integral

(e 0] o0
over X» as this is a function which depends on x,. However, following the same line of process as
before, we can apply the Holder’s inequality to:
1

E |0 ulda ™ r[”*[ *10 uldx da "X

o 1 1 j=3J) o j 1 2

o0
[ u™ D, dxydx,

—0o0
1
1 1 q o
n— n—
0 1 0 1 0
<[JJ |o:uldxidas] . [ff oruldadxz] . [T Jf 16ul dxadxaday]
—00 —00 —00

j=3

Wehcan follow exactly the same process by integrating over all the other variables. We end up
Wit

| b av < (o avy !
This completes the proof for p=1. For any p values we need to pr prove that:
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(n—p)/(np) 1/p
. [Jupn/n-p)dv]  <C(n,p)( oupdv) .
The idea is to simply apply the relation derived for p=1, not to the function u, but to |u|".

The following inequality holds:

n n
e av<dionridv) P =@ o dv)y
Using the Holder’s inequality, we can express:
1
a 5 1 1
y Jju ™" ou| dV <y [Jjul* M1 dV] fouP dv]  with + =1.
P q
Jm
By choosing = (y — 1)q, we have:
-
1
n
yn 1-n/q(n—1) n
Ol 1 av] <y "1 0P o,
11 yn
Using the relations + =1land = (y — 1)q, wecan see immediately that the last
p q n—1
inequality is equivalent to:
(n—p)/(np
) 1/p
[lupe dv] <C(n, p) (Jouf dv) .
Note that it is standard to write:
pn
pr=
n—p
Then, we can write:
1/p
* 1/p

[uP* dVv] <C(n, p) (Jjouf dV) .
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Poincaré’s inequality
For any functions, u € W*P(Q) (Q bounded subset of IR"), there exists a constant C(n, p)
such that:

||u|||_p(Q) <C(n, p). loul LP@)-

This is called the Poincaré’s inequality. The general idea is that this inequality gives a way to
eSItIrr_late thed L°(Q) norm of a function in terms of the LP(Q) norm of its derivative. Explicitly, this
relation reads:

n oup
— av
[, ....,x)PdV<Cm,p).] | | .
1n
Q Q aXi
i=1
Further Sobolev’s theorems

We have already presented an interpolation inequality for LP(Q) sets:
for any function f € L°(Q) N LY(Q), then f € L'(Q) and Ifl rq) verifies:

0 1-0 1
0 1-6

with 1 <p<r<q<wand0<06<1.

Similarly, there exists an interpolation inequality for Sobolev’s sets H’(IR"). For any real values 0
<S5 <sp <o, and for any s € [S1, S
such that s = 0s; + (1 — 0)s, with 0 <0 < 1, we have:
If u € H1 (IR") N H%2 (IR"), then u € H*(IR"), and o
lulH*(IR") < lulHs1(IRn)lulHs2(IRn) (s = 0s1 + (1 — 0)sp)
'tl)'htis means that we can interpolate between higher and lower H*(Q) sets to get something in
etween.

We now discuss a final useful inequality, usually called the Gagliardo-Nirenberg-Sobolev’s
inequality. This is also an interpolation inequality, complementary of the previous relation
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between sets H*(IR"), H*1 (IR") and H®2 (IR"). It follows closely the interpolation inequality for

LP(Q) sets, recalled above.

For any function u € W"p(IR;) r)w WH(IR™), then u € W*'(IR") and there exists a universal
u

constant C>0 (independent of u) such that:
1 kK
Io%al,  n <C.1dul’s  n gu'y’ n provided that T~

L I
(IR ) L& ) L(IR ) rn

1 1 1

=0(p-n)+l —0) q-n).

This is called the Gagliardo-Nirenberg-Sobolev’s inequality or simply the interpolation
inequality. Remark that it holds for0 <0 <1,j<k<land 1 <p<r<q<oo.
For a bounded subset of IR" (Qf, we have in addition: L o
o . ullwk,r( )y < Clul W|,p(g lul w .0 )-
We can apply this interpolation inequality to a particular (interesting) case:

1 1

L L

I6'ulLpgry < Cld%ul *parmylul *P(IR")

1 1
Here, we can use the scaled Young’s inequality to Cllc’idullip(I n hul ip(l n.

LR ) LR
g
P T e
Foranye>0,ab<e ~— +[g] o (a,b=0).

) q
Hence, there exists a constant >0 such that:

. ||6u||Lp(|Rn) < 5"8211" Lp(|Rn)+C5||u||Lp(|Rn). )
This means that the L® norm of du is controlled by the L norms of ¢“u and u.
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